Spelling suggestions: "subject:"control off structures"" "subject:"control oof structures""
1 |
Development of a Pseudo-uniform Structural Velocity Metric for Use in Active Structural Acoustic ControlFisher, Jeffery M. 30 August 2010 (has links) (PDF)
Active control of sound and vibration fields has become an strong area of research over the past few decades. In regards to the active control of acoustic radiation from vibration fields, known as active structural acoustic control (ASAC), there have been many different methods employed to understand structural and acoustic relationships and to control vibrations to limit the acoustic radiation. With active sound field control, sensors, usually microphones, need to be dispersed in the sound field, or an array of microphones must be placed directly in the sound field which, in many cases, uses up too much space for practical applications. To remedy this, objective functions have been transferred to the structure, sensing vibrations rather than pressures. A small, integrated array of structural sensors can be placed on the structure, reducing the system's overall footprint. Acoustic energy density has become a well established objective function, which produces a more global effect using only a local measurement. Another benefit of acoustic energy density lies in the breadth of sensor placement. While acoustic energy density has proven successful in active noise control (ANC), the quantity deals with pressures, not surface vibrations. The problem with ASAC is that an objective function with the robustness of acoustic energy density does not yet exist. This thesis focuses on a structural error sensing technique that mimics the properties of acoustic energy density control in the sound field. The presented structural quantity has been termed Vcomp, as it is a composite of multiple terms associated with velocity. Both analytical and experimental results with the control of this quantity are given for a rectangular plate. The control of Vcomp is compared to other objective function including squared velocity, volume velocity and acoustic energy density. In the analytical cases, the benefits include: control at higher structural modes, control largely independent of sensor location, and need for only a single point measurement of squared Vcomp with a compact sensor. The control at higher frequencies can be explained by the control of multiple acoustic radiation modes. Experimental results offer some validity to the analytical benefits but alternate sensing techniques need to be investigates to more fully validate these benefits.
|
2 |
Development and Application of Modern Optimal Controllers for a Membrane Structure Using Vector Second Order FormFerhat, Ipar 23 June 2015 (has links)
With increasing advancement in material science and computational power of current computers that allows us to analyze high dimensional systems, very light and large structures are being designed and built for aerospace applications. One example is a reflector of a space telescope that is made of membrane structures. These reflectors are light and foldable which makes the shipment easy and cheaper unlike traditional reflectors made of glass or other heavy materials. However, one of the disadvantages of membranes is that they are very sensitive to external changes, such as thermal load or maneuvering of the space telescope. These effects create vibrations that dramatically affect the performance of the reflector.
To overcome vibrations in membranes, in this work, piezoelectric actuators are used to develop distributed controllers for membranes. These actuators generate bending effects to suppress the vibration. The actuators attached to a membrane are relatively thick which makes the system heterogeneous; thus, an analytical solution cannot be obtained to solve the partial differential equation of the system. Therefore, the Finite Element Model is applied to obtain an approximate solution for the membrane actuator system.
Another difficulty that arises with very flexible large structures is the dimension of the discretized system. To obtain an accurate result, the system needs to be discretized using smaller segments which makes the dimension of the system very high. This issue will persist as long as the improving technology will allow increasingly complex and large systems to be designed and built. To deal with this difficulty, the analysis of the system and controller development to suppress the vibration are carried out using vector second order form as an alternative to vector first order form. In vector second order form, the number of equations that need to be solved are half of the number equations in vector first order form.
Analyzing the system for control characteristics such as stability, controllability and observability is a key step that needs to be carried out before developing a controller. This analysis determines what kind of system is being modeled and the appropriate approach for controller development. Therefore, accuracy of the system analysis is very crucial. The results of the system analysis using vector second order form and vector first order form show the computational advantages of using vector second order form.
Using similar concepts, LQR and LQG controllers, that are developed to suppress the vibration, are derived using vector second order form. To develop a controller using vector second order form, two different approaches are used. One is reducing the size of the Algebraic Riccati Equation to half by partitioning the solution matrix. The other approach is using the Hamiltonian method directly in vector second order form. Controllers are developed using both approaches and compared to each other. Some simple solutions for special cases are derived for vector second order form using the reduced Algebraic Riccati Equation. The advantages and drawbacks of both approaches are explained through examples.
System analysis and controller applications are carried out for a square membrane system with four actuators. Two different systems with different actuator locations are analyzed. One system has the actuators at the corners of the membrane, the other has the actuators away from the corners. The structural and control effect of actuator locations are demonstrated with mode shapes and simulations. The results of the controller applications and the comparison of the vector first order form with the vector second order form demonstrate the efficacy of the controllers. / Ph. D.
|
3 |
Otimização topológica para localização de atuadores piezelétricos utilizando gramiano de controlabilidade / Topology optimization for piezoelectric actuators placement using controllability gramianGonçalves, Juliano Fagundes January 2015 (has links)
Este trabalho apresenta a formulação de um problema de otimização topológica para o posicionamento ótimo de atuadores baseado na teoria de controle. A estrutura é composta por dois materiais: um material passivo elástico e um material ativo piezelétrico, ambos lineares. Pretende-se obter um sistema de controle no qual todos os estados sejam controláveis. O processo de otimização topológica busca a distribuição de material piezelétrico que maximize o menor autovalor do Gramiano de controlabilidade garantindo, assim, sua não singularidade e, consequentemente, que o sistema seja completamente controlável. Programação linear sequencial (SLP) é utilizada para a solução do problema de otimização e as sensibilidades para o modelo de elementos finitos são deduzidas para a função objetivo e restrições. Análises modais das topologias ótimas são utilizadas para a definição de um controlador LQR e as respostas das estruturas controladas submetidas à uma carga impulsiva são analisadas. / This work presents a topology optimization formulation for the actuator placement based on the control theory. The structure is composed by two materials: a passive elastic material and an active piezoelectric material, both linear. The aim is to obtain a control system which all states are controllable. The topology optimization process searches the piezoelectric material distribution which maximizes the smallest eigenvalue of the controllability Gramian ensuring its non-singularity and, therefore, the system is completely controllable. Sequential linear programming (SLP) is used to solve the optimization problem. The sensitivities for the finite element model were derived for the objective function and constraints. Modal analysis from the optimal topologies were employed in an LQR controller and the responses for the controlled structures submitted to an impulsive load are analyzed.
|
4 |
Otimização topológica para localização de atuadores piezelétricos utilizando gramiano de controlabilidade / Topology optimization for piezoelectric actuators placement using controllability gramianGonçalves, Juliano Fagundes January 2015 (has links)
Este trabalho apresenta a formulação de um problema de otimização topológica para o posicionamento ótimo de atuadores baseado na teoria de controle. A estrutura é composta por dois materiais: um material passivo elástico e um material ativo piezelétrico, ambos lineares. Pretende-se obter um sistema de controle no qual todos os estados sejam controláveis. O processo de otimização topológica busca a distribuição de material piezelétrico que maximize o menor autovalor do Gramiano de controlabilidade garantindo, assim, sua não singularidade e, consequentemente, que o sistema seja completamente controlável. Programação linear sequencial (SLP) é utilizada para a solução do problema de otimização e as sensibilidades para o modelo de elementos finitos são deduzidas para a função objetivo e restrições. Análises modais das topologias ótimas são utilizadas para a definição de um controlador LQR e as respostas das estruturas controladas submetidas à uma carga impulsiva são analisadas. / This work presents a topology optimization formulation for the actuator placement based on the control theory. The structure is composed by two materials: a passive elastic material and an active piezoelectric material, both linear. The aim is to obtain a control system which all states are controllable. The topology optimization process searches the piezoelectric material distribution which maximizes the smallest eigenvalue of the controllability Gramian ensuring its non-singularity and, therefore, the system is completely controllable. Sequential linear programming (SLP) is used to solve the optimization problem. The sensitivities for the finite element model were derived for the objective function and constraints. Modal analysis from the optimal topologies were employed in an LQR controller and the responses for the controlled structures submitted to an impulsive load are analyzed.
|
5 |
Otimização topológica para localização de atuadores piezelétricos utilizando gramiano de controlabilidade / Topology optimization for piezoelectric actuators placement using controllability gramianGonçalves, Juliano Fagundes January 2015 (has links)
Este trabalho apresenta a formulação de um problema de otimização topológica para o posicionamento ótimo de atuadores baseado na teoria de controle. A estrutura é composta por dois materiais: um material passivo elástico e um material ativo piezelétrico, ambos lineares. Pretende-se obter um sistema de controle no qual todos os estados sejam controláveis. O processo de otimização topológica busca a distribuição de material piezelétrico que maximize o menor autovalor do Gramiano de controlabilidade garantindo, assim, sua não singularidade e, consequentemente, que o sistema seja completamente controlável. Programação linear sequencial (SLP) é utilizada para a solução do problema de otimização e as sensibilidades para o modelo de elementos finitos são deduzidas para a função objetivo e restrições. Análises modais das topologias ótimas são utilizadas para a definição de um controlador LQR e as respostas das estruturas controladas submetidas à uma carga impulsiva são analisadas. / This work presents a topology optimization formulation for the actuator placement based on the control theory. The structure is composed by two materials: a passive elastic material and an active piezoelectric material, both linear. The aim is to obtain a control system which all states are controllable. The topology optimization process searches the piezoelectric material distribution which maximizes the smallest eigenvalue of the controllability Gramian ensuring its non-singularity and, therefore, the system is completely controllable. Sequential linear programming (SLP) is used to solve the optimization problem. The sensitivities for the finite element model were derived for the objective function and constraints. Modal analysis from the optimal topologies were employed in an LQR controller and the responses for the controlled structures submitted to an impulsive load are analyzed.
|
6 |
An Experimental Analysis of the Weighted Sum of Spatial Gradients Minimization Quantity in Active Structural Acoustic Control of Vibrating PlatesHendricks, Daniel R. 13 December 2013 (has links) (PDF)
Active Structural Acoustic Control (ASAC) is a subcategory of the more widely known field of Active Noise control (ANC). ASAC is different from traditional ANC methods because it seeks to attenuate noise by altering the noise producing structure instead of altering the acoustic waves traveling through the air. The greatest challenge currently facing ASAC researchers is that a suitable parameter has not yet been discovered which can be easily implemented as the minimization quantity in the control algorithms. Many parameters have been tried but none effectively attenuate the sound radiation in a way that can be easily implemented. A new parameter was recently developed which showed great potential for use as a minimization quantity. This parameter has been termed the "weighted sum of spatial gradients" (WSSG) and was shown by previous researchers to significantly reduce noise emissions from a vibrating simply supported plate in computer simulations. The computer simulations indicate that WSSG-based control provides as good or better control than volume velocity and does so with a single point measurement which is relatively insensitive to placement location. This thesis presents the experimental validation of the WSSG computer simulations. This validation consists of four major components. First, additional research was needed in to extend the use of WSSG from computer simulations to experimental setups. Second, the WSSG-based control method was performed on simply supported plates to validate the computer simulations. Third, the WSSG-based control method on was used on clamped plates to validate the computer simulations, and fourth, the WSSG-based control method was validated on plates with ribs. The important results are discussed and conclusions summarized for each of these sections. Recommendations are made for future work on the WSSG parameter.
|
7 |
Análisis de la respuesta esperada de edificaciones existentes de concreto armado de 7, 10 y 20 pisos con Amortiguadores de Masa Sintonizada, en la ciudad de Lima / Analysis of the expected response of existing 7, 10 and 20 story reinforced concrete buildings with Tuned Mass Dampers, in the city of LimaCruz Huamán, Aníbal Willebaldo, Herhuay Chocce, Marco Antonio 15 December 2021 (has links)
El capítulo I presenta una introducción y aspectos generales en base a los antecedentes, realidad problemática, formulación del problema; así como la definición de la hipótesis y los objetivos concluyentes.
El capítulo II se realiza el estado del arte basándose en los fundamentos teóricos más importantes en base a la eficiencia de los AMS sometidos a fuerzas o movimientos armónicos en la base; así también describe generalidades en base a la clasificación general de los sistemas de protección sísmica, fundamentos del AMS, y resumen de trabajos relevantes sobre aplicaciones en edificios y otras obras de ingeniería civil.
El capítulo III, IV y V se refieren al comportamiento de estructuras sin AMS frente a acciones sísmicas. En particular se analizan las edificaciones existentes reales de 7, 10 y 20 niveles en base al análisis computacional.
El capítulo VI presenta los parámetros de diseño de un AMS para tres aplicaciones de edificios reales de 7, 10 y 20 niveles, concluyendo con la determinación de las características óptimas para la construcción y los efectos generados por estas.
Finalmente, en el capítulo VII se presentan las principales conclusiones y recomendaciones basadas en la investigación realizada. / Chapter I presents an introduction and general aspects based on the background, problematic reality, formulation of the problem, as well as the definition of the hypothesis and the conclusive objectives.
Chapter II the state of the art is made based on the most important theoretical foundations based on the efficiency of the AMS subjected to forces or harmonic movements in the base; it also describes generalities based on the general classification of seismic protection systems, foundations of the AMS, and summary of relevant works on applications in buildings and other civil engineering works.
Chapter III, IV and V refers to the behavior of structures without AMS against seismic actions. In particular, the real existing buildings of 7, 10, and 20 levels are analyzed based on the computational analysis.
Chapter VI presents the design parameters of an AMS for three applications of real buildings of 7, 10 and 20 levels, concluding with the determination of the optimal characteristics for the construction and the effects generated by these.
Finally, Chapter VI presents the main conclusions and recommendations based on the research carried out. / Tesis
|
Page generated in 0.102 seconds