• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Option Pricing Using MATLAB

Gu, Chenchen 27 April 2011 (has links)
This paper describes methods for pricing European and American options. Monte Carlo simulation and control variates methods are employed to price call options. The binomial model is employed to price American put options. Using daily stock data I am able to compare the model price and market price and speculate as to the cause of difference. Lastly, I build a portfolio in an Interactive Brokers paper trading [1] account using the prices I calculate. This project was done a part of the masters capstone course Math 573: Computational Methods of Financial Mathematics.
2

Risk Measurement, Management And Option Pricing Via A New Log-normal Sum Approximation Method

Zeytun, Serkan 01 October 2012 (has links) (PDF)
In this thesis we mainly focused on the usage of the Conditional Value-at-Risk (CVaR) in risk management and on the pricing of the arithmetic average basket and Asian options in the Black-Scholes framework via a new log-normal sum approximation method. Firstly, we worked on the linearization procedure of the CVaR proposed by Rockafellar and Uryasev. We constructed an optimization problem with the objective of maximizing the expected return under a CVaR constraint. Due to possible intermediate payments we assumed, we had to deal with a re-investment problem which turned the originally one-period problem into a multiperiod one. For solving this multi-period problem, we used the linearization procedure of CVaR and developed an iterative scheme based on linear optimization. Our numerical results obtained from the solution of this problem uncovered some surprising weaknesses of the use of Value-at-Risk (VaR) and CVaR as a risk measure. In the next step, we extended the problem by including the liabilities and the quantile hedging to obtain a reasonable problem construction for managing the liquidity risk. In this problem construction the objective of the investor was assumed to be the maximization of the probability of liquid assets minus liabilities bigger than a threshold level, which is a type of quantile hedging. Since the quantile hedging is not a perfect hedge, a non-zero probability of having a liability value higher than the asset value exists. To control the amount of the probable deficient amount we used a CVaR constraint. In the Black-Scholes framework, the solution of this problem necessitates to deal with the sum of the log-normal distributions. It is known that sum of the log-normal distributions has no closed-form representation. We introduced a new, simple and highly efficient method to approximate the sum of the log-normal distributions using shifted log-normal distributions. The method is based on a limiting approximation of the arithmetic mean by the geometric mean. Using our new approximation method we reduced the quantile hedging problem to a simpler optimization problem. Our new log-normal sum approximation method could also be used to price some options in the Black-Scholes model. With the help of our approximation method we derived closed-form approximation formulas for the prices of the basket and Asian options based on the arithmetic averages. Using our approximation methodology combined with the new analytical pricing formulas for the arithmetic average options, we obtained a very efficient performance for Monte Carlo pricing in a control variate setting. Our numerical results show that our control variate method outperforms the well-known methods from the literature in some cases.
3

Méthodes statistiques pour l’estimation du rendement paramétrique des circuits intégrés analogiques et RF / Statistical methods for the parametric yield estimation of analog/RF integratedcircuits

Desrumaux, Pierre-François 08 November 2013 (has links)
De nombreuses sources de variabilité impactent la fabrication des circuits intégrés analogiques et RF et peuvent conduire à une dégradation du rendement. Il est donc nécessaire de mesurer leur influence le plus tôt possible dans le processus de fabrications. Les méthodes de simulation statistiques permettent ainsi d'estimer le rendement paramétrique des circuits durant la phase de conception. Cependant, les méthodes traditionnelles telles que la méthode de Monte Carlo ne sont pas assez précises lorsqu'un faible nombre de circuits est simulé. Par conséquent, il est nécessaire de créer un estimateur précis du rendement paramétrique basé sur un faible nombre de simulations. Dans cette thèse, les méthodes statistiques existantes provenant à la fois de publications en électroniques et non-Électroniques sont d'abord décrites et leurs limites sont mises en avant. Ensuite, trois nouveaux estimateurs de rendement sont proposés: une méthode de type quasi-Monte Carlo avec tri automatique des dimensions, une méthode des variables de contrôle basée sur l'estimation par noyau, et une méthode par tirage d'importance. Les trois méthodes reposent sur un modèle mathématique de la métrique de performance du circuit qui est construit à partir d'un développement de Taylor à l'ordre un. Les résultats théoriques et expérimentaux obtenus démontrent la supériorité des méthodes proposées par rapport aux méthodes existantes, à la fois en terme de précision de l'estimateur et en terme de réduction du nombre de simulations de circuits. / Semiconductor device fabrication is a complex process which is subject to various sources of variability. These variations can impact the functionality and performance of analog integrated circuits, which leads to yield loss, potential chip modifications, delayed time to market and reduced profit. Statistical circuit simulation methods enable to estimate the parametric yield of the circuit early in the design stage so that corrections can be done before manufacturing. However, traditional methods such as Monte Carlo method and corner simulation have limitations. Therefore an accurate analog yield estimate based on a small number of circuit simulations is needed. In this thesis, existing statistical methods from electronics and non-Electronics publications are first described. However, these methods suffer from sever drawbacks such as the need of initial time-Consuming circuit simulations, or a poor scaling with the number of random variables. Second, three novel statistical methods are proposed to accurately estimate the parametric yield of analog/RF integrated circuits based on a moderate number of circuit simulations: An automatically sorted quasi-Monte Carlo method, a kernel-Based control variates method and an importance sampling method. The three methods rely on a mathematical model of the circuit performance metric which is constructed based on a truncated first-Order Taylor expansion. This modeling technique is selected as it requires a minimal number of SPICE-Like circuit simulations. Both theoretical and simulation results show that the proposed methods lead to significant speedup or improvement in accuracy compared to other existing methods.

Page generated in 0.0632 seconds