• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 144
  • 95
  • 24
  • 19
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 359
  • 359
  • 94
  • 88
  • 75
  • 66
  • 58
  • 40
  • 31
  • 29
  • 28
  • 28
  • 28
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Microsphere Kinetics in Chronic Total Occlusions

Fraser, Ashley 31 December 2010 (has links)
Chronic total occlusions are a common problem in patients with coronary artery disease. The primary barrier to successful percutaneous coronary intervention is inability to cross the lesion with a guidewire. We seek to characterize polymer microspheres as a controlled delivery mechanism for collagenase and VEGF, novel intralesional therapies being investigated to alter CTO structural properties. Release profiles for protein-loaded PLGA [poly(lactic-co-glycolic acid)] microspheres showed sustained BSA and VEGF release over eight and 48 hours respectively. Polymer degradation products had no impact on endothelial cell growth and protein bioactivity was maintained post-release. In vivo localization of microsphere-released collagenase was not possible due to low concentrations remaining at the site. Histology confirmed microspheres remained in the collagen-dense, proximal 15 mm of the lesion, likely altering the structural integrity of the plaque.
52

Development and evaluation of an oral controlled release and a transdermal delivery system, for melatonin in human subjects

Lee, Beom-jin 08 December 1992 (has links)
Graduation date: 1993
53

Chitosan-Sericin Blend Membranes for Controlled Release of Drugs

Eslami, Shahabedin 22 December 2011 (has links)
The peak and valley problems caused by oral administration, injection or other conventional methods, call for developing systems that can deliver therapeutics more effectively. As one of the techniques, diffusion-controlled drug release membranes have significant interest due to great ease with which they can be designed to achieve near-zeroth-order release kinetics. Since diffusion is the rate-limiting step in these systems, determining the permeability and diffusivity of drug molecules in the membrane is therefore important in evaluating drug release performance. This study focuses on the Membrane Permeation Controlled Release (MPC) system, which involves a non-porous (dense) membrane, comprising of two biopolymers, sericin and chitosan. Ciprofloxacin hydrochloride and (+)-cis-diltiazem hydrochloride were used as hydrophilic model drugs, and nitro-2-furaldehyde semicarbazone (Nitrofurazon) was used as a hydrophobic model drug. Permeation experiments were carried out in a semi-infinite reservoir/receptor system to simulate in-vitro drug release. The intrinsic permeability and diffusivity (P, D) of the drugs through the membranes were determined using a modified time-lag method based on short time permeation and mass balance method based on long time permeation. The partition coefficients Kd of the drugs in the membranes and the swelling degree of the membranes were determined by sorption/desorption experiments. The diffusivities of the drugs were also determined from the sorption/desorption kinetics. Over the experimental ranges tested, the drug concentration and membrane cross-linking did not have significant effects on these parameters presumably due to the relatively low drug concentrations and mild crosslinkings of the membranes. The diffusivity coefficients of ciprofloxacin hydrochloride, (+)-cis-diltiazem hydrochloride and nitrofurazon in the membranes were found to be in the range of (2.0-2.6)×〖10〗^(-9)±2.6×〖10〗^(-10) cm2/s, (2.5-2.6) ×〖10〗^(-9)±1.1×〖10〗^(-10) and (38-134) ×〖10〗^(-9)±33.1×〖10〗^(-9) (cm2/s), respectively, and their permeability coefficients were in the range of (24-29)×〖10〗^(-8),(51-52) ×〖10〗^(-8) and (131-169) ×〖10〗^(-8) (cm2/s), respectively. The partition coefficients were determined to be around 0.91±0.21, 25±0.12 and 26±0.31, respectively. The diffusivity coefficients determined from sorption experiments for ciprofloxacin hydrochloride, diltiazem hydrochloride and nitrofurazon were found to be in the range of (3.2-7.6) ×〖10〗^(-9)±6.3×〖10〗^(-8), (6-10) ×〖10〗^(-9)±2.6×〖10〗^(-8) and (15-18) ×〖10〗^(-9)±2.7×〖10〗^(-7) (cm2/s), respectively. Also the diffusivity coefficients determined from sorption experiments for ciprofloxacin hydrochloride, diltiazem hydrochloride and nitrofurazon were in the range of (20-47) ×〖10〗^(-9), (12-24) ×〖10〗^(-9) and (11-20) ×〖10〗^(-9) (cm2/s), respectively. Nonetheless the differences in the diffusivities calculated from permeation and sorption/desorption experiments are considered to be acceptable, in view of the different experimental techniques used in this work, for the purpose of comparison of the membrane diffusivity and permeability.
54

In situ chemical oxidation of TCE-contaminated groundwater using slow permanganate-releasing material

Wang, Sze-Kai 03 August 2011 (has links)
The purpose of this study was to use controlled release technology combining with in situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) to remediate TCE-contaminated groundwater. In this study, potassium permanganate (KMnO4) releasing material was designed for potassium permanganate release in groundwater. The components of potassium permanganate releasing material included poly (£`-caprolactone) (PCL), potassium permanganate, and starch with a weight ratio of 2:1:0.5. Approximately 63.8% (w/w) of potassium permanganate was released from the material after 76 days of operation. The released was able to oxidize contaminant in groundwater. Results from the solid oxidation demand (SOD) experiment show that the consumption rate increased with increased contaminant concentration. TCE removal efficiency increased with the increased TCE concentration. The second-order rate law can be used to simulate the TCE degradation trend. In the column experiment, results show that the released MnO4- could oxidize TCE and TCE degradation byproducts when 95.6 pore volume (PV) of contaminated groundwater was treated. More than 95% of TCE removal can be observed in the column study. Although the concentration of manganese dioxide (MnO2) began to rise after 8.8 PV of operation, TCE removal was not affected. Results also show that low level of hexavalent chromium was detected (< 0.05 mg/L). Results from the scanning electron microscope (SEM) and energy-dispersive spectroscope (EDX) analyses show that the amounts of manganese and potassium in the materials decreased after the releasing experiment. Results indicate that the concentration of TCE and SOD need to be analyzed before the releasing materials are applied in situ. In the practical application, the releasing materials will not become solid wastes because they are decomposed after use. If this slow-releasing technology can be combined with a permeable reactive barrier system, this technology will become a more economic and environmentally-friendly green remedial system.
55

Experimental and computational investigations of therapeutic drug release from biodegradable poly(lactide-co-glycolide) (plg) microspheres

Berchane, Nader Samir 15 May 2009 (has links)
The need to tailor release-rate profiles from polymeric microspheres remains one of the leading challenges in controlled drug delivery. Microsphere size, which has a significant effect on drug release rate, can potentially be varied to design a controlled drug delivery system with desired release profile. In addition, drug release rate from polymeric microspheres is dependent on material properties such as polymer molecular weight. Mathematical modeling provides insight into the fundamental processes that govern the release, and once validated with experimental results, it can be used to tailor a desired controlled drug delivery system. To these ends, PLG microspheres were fabricated using the oil-in-water emulsion technique. A quantitative study that describes the size distribution of poly(lactide-coglycolide) (PLG) microspheres is presented. A fluid mechanics-based correlation that predicts the mean microsphere diameter is formulated based on the theory of emulsification in turbulent flow. The effects of microspheres’ mean diameter, polydispersity, and polymer molecular weight on therapeutic drug release rate from poly(lactide-co-glycolide) (PLG) microspheres were investigated experimentally. Based on the experimental results, a suitable mathematical theory has been developed that incorporates the effect of microsphere size distribution and polymer degradation on drug release. In addition, a numerical optimization technique, based on the least squares method, was developed to achieve desired therapeutic drug release profiles by combining individual microsphere populations. The fluid mechanics-based mathematical correlation that predicts microsphere mean diameter provided a close fit to the experimental results. We show from in vitro release experiments that microsphere size has a significant effect on drug release rate. The initial release rate decreased with an increase in microsphere size. In addition, the release profile changed from first order to concave-upward (sigmoidal) as the microsphere size was increased. The mathematical model gave a good fit to the experimental release data. Using the numerical optimization technique, it was possible to achieve desired release profiles, in particular zero-order and pulsatile release, by combining individual microsphere populations at the appropriate proportions. Overall, this work shows that engineering polymeric microsphere populations having predetermined characteristics is an effective means to obtain desired therapeutic drug release patterns, relevant for controlled drug delivery.
56

Preparation Of Chitosan-polyvinylpyrrolidone Microspheres And Films For Controlled Release And Targeting Of 5-fluorouracil

Ozerkan, Taylan 01 September 2007 (has links) (PDF)
Controlled drug delivery systems deliver drugs at predetermined rates for extended periods. Although there are various types such as capsules, tablets etc, micro and nano spheres are the most commonly used systems. In this study, a set of chitosan-polyvinylpyrrolidone (CH-PVP) microspheres containing different amounts of polyvinylpyrrolidone as semi inter penetrating networks (semi-IPN) were prepared as controlled release systems. Emulsification method was applied for the preparation of microspheres and some of them were conjugated with a monoclonal antibody which is immunoglobulin G (IgG). CH-PVP films were also prepared by solvent casting method with the same composition as in the microspheres and, mechanical and surface properties of the films were examined. Prepared microspheres were characterized by SEM, stereo and confocal microscopes. Some microspheres were loaded with a model chemotherapeutic drug, 5-Fluorouracil (5-FU), and in-vitro release of 5-FU were examined in phosphate buffer solutions (pH 7.4, 0.01 M.) It was shown that for semi-IPN samples release was faster compared to pure CH samples and the total release was achived 30 days for CH:PVP-2:1, CH:PVP-3:1 semi-IPNs and CH microspheres and 27 days for CH:PVP-1:1 semi-IPN microspheres. The antibody conjugated microspheres were targeted to MDA-MB (human causasian breast carcinoma cancer cells and coculture cells in culture medium. For the CH-PVP films, it was obtained that as the amount of PVP increased, hydrophobicity as well as mechanical strength of the system was decreased.
57

Physicochemical and mechanical characterization of hot-melt extruded dosage forms

Crowley, Michael McDonald 28 August 2008 (has links)
Not available / text
58

Properties of polymeric drug delivery systems prepared by hot-melt extrusion

Zhu, Yucun 28 August 2008 (has links)
Not available / text
59

Lightly crosslinked poly(ethylene glycol)-tethered, pH-responsive biomaterials

Thomas, Joshua Brock 28 August 2008 (has links)
Not available / text
60

Investigation of cellulose ether polymers in controlled drug delivery

Mahaguna, Vorapann 28 March 2011 (has links)
Not available / text

Page generated in 0.0613 seconds