• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methods for Control in the Synthesis of Structured Siloxane Architectures

Thompson, David B. January 2008 (has links)
<p> The advantageous properties of siloxanes find use in a wide range of applications. Unfortunately, the dynamic nature of silicones which is responsible for these properties is often a limitation in the controlled synthesis and modification of siloxane materials. Gaining greater control over these processes would allow for the synthesis of siloxane materials with more explicit structures, giving them a narrower range of properties and expanding application. Furthermore, the ability to synthesize more siloxane architectures with greater control would allow for an increased understanding of the relationship between structural features and physical properties.</p> <p> The synthesis of hydrosilane-rich siloxane elastomers and subsequent controlled modification, particularly with poly(ethylene oxide), is described. The effect of chain length and functionality (mono- or di-) was found to influence the morphology of grafted polymer. It was also possible to take advantage of the intrinsic properties of siloxanes to sequester hydrophilic moieties to the interior of the elastomer. Utilizing the same hydrosilane rich elastomers, a method for the independent modification of the interior and exterior of hydrosilane rich elastomers is presented. The careful selection of grafting moieties and solvents is used to provide or deny transport to the interior of the elastomer. This method is used to synthesize PEO modified elastomers with various subsequent internal modifications.</p> <p> A method for controlled synthesis of silicone-carbohydrate composites is also described. Utilizing bifunctional silane linkers, protected carbohydrates were functionalized with bulky diisopropyl hydrosilane groups before linkage to short and long silicones. Alternatively, the linker could first be joined to a silicone, followed by silylation of unprotected saccharides using the resultant hindered chlorosilane functional silicone. This method gave preferential silylation at primary hydroxyl groups.</p> <p> Finally, a method is presented for the synthesis of explicit branched siloxane architectures. The B(C6F5)3 catalyzed dehydrocarbonative coupling of hydrosilanes with alkoxysilanes was used to construct branched siloxane architectures in a stepwise fashion. High levels of control were available through manipulation of steric parameters: careful selection of starting materials and conditions allowed for the synthesis of explicit alkoxysilane functional branched siloxanes. These could be grafted to hydrosilane functional silicone polymers, or used to assemble explicit branched siloxanes. Further explorations demonstrated that the assembly process was not inhibited by the presence of organohalide- or alkene functional groups, allowing for the synthesis of functional siloxane moieties with explicit structures.</p> / Thesis / Doctor of Philosophy (PhD)
2

Stereoselective synthesis & application of enantioenriched main group α-haloalkyl organometal reagents

Emerson, Christopher R. 10 November 2011 (has links)
Sulfoxide-ligand exchange (SLE) and asymmetric halogen-metal exchange (AHME) processes were separately examined for the enantioselective synthesis of functionalized alpha-haloalkylmetal (carbenoid) reagents. Carbenoids derived from SLE were used to effect stereospecific reagent-controlled homologation (StReCH) of boronic esters and those generated via AHME were engaged in Darzens-type chemistry with aldehydes. Abstract for Part 1. Scalemic syn alpha-chloroalkylsulfoxides p-TolS(O)CHClR [R = allyl, (1,3-dioxolan-2-yl)methyl, proparygyl, and 2-(benzyloxy)ethyl] were prepared from the corresponding thioethers by Jackson-Ellman-Bolm catalytic enantioselective sulfoxidation [cat. VO(acac)₂, tert-leucinol derived chiral Schiff base ligand, aq. H₂O₂, CHCl₃; 76-80% yield, >98% ee] followed by non-racemizing chlorination mediated by N-chlorosuccinimide in the presence of potassium carbonate (84-86% yield, syn:anti ≥ 20:1). The corresponding anti diastereoisomers were accessed from their syn epimers by sodium hexamethyldisilazide mediated deprotonation (THF, –78 °C) followed by treatment with either CH₃OH or CD₃OD to yield alpha-[¹H] or alpha-[²H] isotopomers, respectively (88% yield, anti:syn ≥ 17:1). Allyl and (1,3- dioxan-2-yl)methyl substituted chlorosulfoxides reacted with R'Li (t-BuLi or PhLi, THF, –78 °C) to give the expected products of SLE [p-TolS(O)R' and LiCHClR or LiCDClR]; however, neither the benzylether nor propargyl substituted substrates gave wholly satisfactory results under the same reaction conditions. The functionalized carbenoid reagents so obtained, 1-chloro-3-butenyllithium and 1-chloro-2-(1,3- dioxolan-2-yl)ethyllithium, were applied to the StReCH of B-(2-chloropyrid-5-yl) pinacol boronate but only the latter gave acceptable yields of chain extended products. The anti alpha-[²H]-chlorosulfoxide dioxolanyl bearing carbenoid precursor gave superior results to the analogous syn or anti alpha-[¹H]-chlorosulfoxides for StReCH of the B-pyridyl boronate [79% conversion, ≥ 89% ee (99% stereofidelity), vs. ≤ 68% conversion for non-deuterated chlorosulfoxides]. The origin of this isotope effect was traced to a deleterious proton transfer pathway between the alpha- chloroalkyllithium reagent and its chlorosulfoxide precursor. Sequential double iterative StReCH of B-(2-chloropyrid-5-yl) pinacol boronate with two separate portions of (S)-1-[²H]-1-chloro-2-(1,3-dioxolan-2-yl)ethyllithium (generated via SLE with phenyllithium) followed by oxidative work-up (with KOOH) gave (1R,2R)-1,2- [²H]₂-2-(2-chloropyrid-5-yl)-1,2-bis[(1,3-dioxolan-2-yl)methyl]ethanol (40% yield, ≥ 98% ee, dr = 85:15). Substitution of the (R)-configured carbenoid for its antipode in the second StReCH stage above gave the unlike (1S,2R)-isomer of the same pyridylethanol derivative (49% yield, ≥ 98% ee, dr = 79:21). The unlike diastereoisomer was advanced to the trifluoroacetamide of (1R,2R)-1,2-[2H]2-1- amino-2-(2-chloropyrid-5-yl)cyclohex-4-ene (6 steps, 5% overall yield); the non- deuterated isotopomer of this compound was previously advanced to the analgesic alkaloid (–)-epibatidine by Corey and co-workers. Abstract for Part 2. Scalemic planar chiral N,N-dialkyl 2-iodoferrocene carboxamides envisioned as recyclable precursors to ferrocenyl metal reagents for AHME, were prepared from ferrocene carboxylic acid by a three step sequence of: acid chloride formation [(COCl)₂ and cat. DMF)], aminolysis (with R₂NH, R = Me, Et, i-Pr; 65- 80% yield over 2 steps), and sec-butyllithium/(–)-sparteine mediated enantioselective directed ortho-metallation (DoM) followed by iodinolysis (87% yield, ≥ 96% ee). Attempts to access more elaborate 5-substituted 2-iodoferrocene carboxamides via DoM/iodinolysis of ortho-substituted ferrocene carboxamides (Me, Ph, or SiMe₃ substituents) mostly failed; however, analogous trisubstituted ferrocene oxazolines could be synthesized. Treatment of N,N-diisopropyl 2-iodoferrocene carboxamide (298, ≥ 96% ee) with n-BuLi (THF, –78 °C) resulted in complete conversion to the corresponding lithioferrocene (327) via I/Li interchange; subsequent iodinolysis initiated reverse Li/I exchange and returned iodoferrocene 298 without diminished enantiomeric excess, establishing configurational stability for the lithiated ferrocene intermediate. Prochiral (RCHI₂) and racemic (RCHICl) geminal dihalide substrates for AHME studies were prepared by electrophilic quench of dihalomethylsodiums with either Ph(CH₂)₃I or Me₃SiCl (50-78% yield). Of the four dihalides so produced, only prochiral substrate Me₃SiCHI₂ engaged in I/Li exchange with scalemic lithioferrocene 327 resulting in regeneration of its precursor iodoferrocene 298 and the formation of a putative chiral carbenoid Me₃SiCHLiI. Trapping of the carbenoid with aldehydes RCHO (R = Ph, 4-MeOC₆H₄, Ph(CH₂)₂, c-C₆H₁₁) in the presence of Me₂AlCl gave the expected epoxysilane products (35-40% yield, cis:trans ≥ 2:1) but without discernable enantiomeric excess. Hypotheses to account for the apparent lack of stereoinduction in this AHME cycle are presented. Comparable experiments using analogous magnesiated ferrocenes failed to produce putative carbenoid species from the same set of geminal dihalide substrates. / Graduation date: 2012
3

In-depth determination of the connectivity and topology of (co)polymers by state-of-the-art mass spectrometry

De Winter, Julien J 21 March 2011 (has links)
Nowadays, polymer chemists undertake considerable efforts to achieve the preparation of new macromolecules and a perfect control over the macromolecular engineering, i.e. the mass parameters but also over the chain and end-group compositions, topology, etc… is definitively expected. In addition, more complex architectures, such as brush (co)polymers, jellyfish-like topologies…, are required to improve or drastically modify the physicochemical properties of the materials. As a direct consequence of the development of such complex molecular objects, sophisticated techniques are required for the in-depth characterization of the macromolecules, since the exact compositions and structures should be fully and unambiguously identified. Given the fact that the usual characterization tools such as Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC) are extensively used, their abilities have been intensively developed to account for the increasing complexity and diversity of the targeted molecules. Nevertheless, all the usual techniques are averaging methodologies since they only provide pieces of information about the polymer mixture instead of affording data on the individual macromolecules. Since few decades, mass spectrometry (MS) has become as used as NMR and GPC for polymer characterization. In the context of large molecules analysis, MS undoubtedly underwent an impressive craze with the development of two modern ionization procedures, namely Electrospray Ionization (ESI) and Matrix-assisted Laser Desorption/Ionization (MALDI). Those ionization procedures permit the vaporization of macromolecules allowing the intact polymers to be analyzed without a too extensive level of degradation. ESI and MALDI are often considered as soft ionization methods since they offer the possibility to observe ions corresponding to the intact molecules. After their production in the ion source, ions corresponding to the polymer molecules can be mass analyzed by the mass spectrometer and important parameters such as the molecular weight distribution (Mn and Mw), polydispersity index (PDI), the nature of the monomer units and the end-groups can be derived from the measure of the mass-to-charge ratios of the produced ions. In the first part of the present thesis, we studied the MS behavior of different classes of polymers when submitted to ESI and MALDI ionizations. The investigations were devoted to the validation of MS as a truly reliable methodology for fragile polymers such as aliphatic polyesters for instance. In this context, a preliminary MS investigation on semi-telechelic polyethers revealed the importance of the source parameters for the characterization of polymers presenting fragile moieties. We also demonstrated the huge importance of the matrix molecule selection for the MALDI analyses of polymers. In particular, we introduced a new matrix for the MALDI measurements of electroconjugated polymers such as polythiophenes. After the study of the influence of the source parameters on the MS data, a complete study by single stage MS and double stage MS (MS/MS) on newly synthesized polylactides (PLA) was performed. The PLA samples were prepared following original procedures using carbene as catalyst. Finally, to achieve the MS study of PLA ions, we used ion mobility-mass spectrometry (IM-MS) experiments to obtained information on the tridimensional structure of the gas phase PLA ions. In particular, we put a special emphasis on the influence of the charge and size of the polymer chains on their gas-phase conformations. The conclusions derived from the MS/MS and IM-MS results were fully supported by theoretical calculations. In the second part of the thesis, the acquired MS experience was applied to the fine characterization of macromolecules presenting complex architectures obtained by two different polymerization procedures: (i) cobalt-mediated radical polymerization of inter alia acrylonitrile and vinyl acetate and (ii) ring-opening polymerization (ROP) of lactones using non-organometallic catalysts. In particular, mass spectrometry was used to tune the experimental conditions for the ROP of â-lactones using different phosphazenes as catalysts. As an ultimate conclusion, this work points to the very efficient synergy between polymer synthesis, mass spectrometry and theoretical calculations. We believe that this thesis paves the way for innumerable possibilities in the future.
4

Relation entre structure, réactivité et interactions cellulaires de nanotubes inorganiques : cas des imogolites / Relating structure, reactivity and cellular interactions of inorganic nanotubes : case of imogolites

Avellan, Astrid 09 December 2015 (has links)
Aujourd’hui, les difficultés pour établir des liens entre caractéristiques des nanomatériaux et réponses biologiques sont principalement issues du manque de contrôle de la synthèse des nanomatériaux, ne permettant pas de faire varier leurs paramètres physico-chimiques clés une à une.Pour identifier certains mécanismes gouvernant la toxicité des nanomatériaux nous avons utilisé un nanotube inorganique modèle dont la synthèse est bien contrôlée : les Ge-imogolites. Les effets de la longueur, du nombre de parois, de la cristallinité et de la composition chimique des Ge-imogolites ont été étudiés sur une bactérie des sols: Pseudomonas brassicacearum. Il a été identifié que la présence de sites réactifs (en bordure de tubes) induit une toxicité due à une interaction forte des nanotubes avec les cellules bactériennes, ainsi que la génération d’espèces réactives de l’oxygène. Ajouter des sites réactifs via la présence de défauts structuraux augmente la dégradation des tubes ainsi que la rétention d’éléments nutritifs essentiels, ce qui augmente leur toxicité. Enfin, l’ajout de fer dans leur structure transforme les Ge-imogolites en source de fer, qui sont dégradées et deviennent promoteurs de croissance. Dans tous ces cas, les interactions entre nanomatériaux et cellules ont été identifiées comme cruciales pour comprendre et prévenir les effets des nanomatériaux. Ce travail de thèse a également permis de mettre en avant la capacité de nouveaux outils pour le suivi de l’internalisation de nanomatériaux dans les organismes. / Only a few studies of (eco)toxicology linked the physico-chemical properties of nanoparticles to the toxicity mechanisms or the stress they induce. Moreover, no clear conclusions can be drawn at present because of the variability of nanoparticles used in studies. The present study used the inorganic Ge-imogolite nanotubes as a model compound. The toxic effects of length, number of walls, structural defects, and chemical composition were assessed towards the soil bacteria Pseudomonas brassicacearum. Several mechanisms modulating the toxicity of Ge-imogolite were then identified. Indeed, reactive sites at the tube ends induce a slight toxicity via a strong cell interaction and the generation of reactive oxygen species. Creating vacant sites on the surface of Ge-imogolite (ant thus increasing the number of reactive sites), appears to cause a deficiency of nutrients in the culture media correlated with a higher degradation of the tubes, leading to a high bacterial growth decrease. Finally, structural iron incorporation into Ge-imogolite transforms them into an iron source, being degraded and becoming growth promoters. In this work, the new tools capacities for the study of nanomaterials/cells interaction have been studied.
5

Semiconductor Nanowires: Synthesis and Quantum Transport

Liang, Dong 26 June 2012 (has links)
No description available.

Page generated in 0.0938 seconds