1 |
'n Studie van die konveksiteitstelling van A.A. LyapunovBarnard, Charlotte 03 1900 (has links)
Thesis (MSc (Mathematics))--University of Stellenbosch, 2008. / Let T be a non-empty set, A a u-algebra of subsets of T and u : .A -+ Rn a bounded,
countably additive measure. A set E E A is called an atom with respect to u if u(E)=/F 0
and, if F E A, FeE, then u(F) = u(E) or u(F) = 0; the measure u is atomic if there
exists at least one atom (with respect to u) in A. If no such atom (with respect to u)
exists in A, then u is called non-atomic.
In 1940 the Russian mathematician A. A. Lyapunov published the Convexity Theorem.
According to this theorem the range 'R.{u) of a bounded, finite-dimensional measure u
is compact and, in the non-atomic case, convex. Since 1940 much has been published
on different aspects of the range of a vector-measure. These aspects range from new
and shorter proofs of the Convexity Theorem and the usefulness of it in diverse fields,
to research about the geometrical characteristics of the range by using other familiar
theorems, like Krein-Milman and Radon-Nikodym.
In the survey at hand the Convexity Theorem in itself is studied. Applications in different
fields will be looked at as well as pieces about the history of the people and the ideas
involved in the development of the theorem.
|
2 |
[en] DELZANT S CONSTRUCTION FOR TORIC SYMPLECTIC MANIFOLDS / [pt] A CONSTRUÇÃO DE DELZANT PARA VARIEDADES TÓRICAS SIMPLÉTICASSIMONE DE FREITAS DE SOUZA 04 February 2019 (has links)
[pt] Em 1988, Delzant classificou as variedades compactas tóricas simpléticas por meio da imagem associada da aplicação momento. Como estabelecido pelo Teorema de Convexidade [Atiyah, Guillemin-Sternberg, 1983], a
imagem pela aplicação momento de uma variedade compacta tórica simplética é um polítopo convexo. A construção de Delzant proporciona uma receita para formar, dado um polítopo de Delzant, uma variedade compacta tórica simplética. Nesta dissertação revisamos essa construção e estudamos alguns exemplos. / [en] In 1988, Delzant proved a classification Theorem of compact toric symplectic manifolds by means of their moment image. By the convexity Theorem [Atiyah, Guillemin-Sternberg, 1983] the moment image of a compact toric symplectic manifold is a convex polytope. Delzant s construction gives a recipe to construct, given a Delzant polytope, the corresponding compact toric symplectic manifold. This thesis describes this construction and studies in detail some examples.
|
3 |
Les actions de groupes en géométrie symplectique et l'application momentPayette, Jordan 11 1900 (has links)
Ce mémoire porte sur quelques notions appropriées d'actions de groupe sur les variétés symplectiques, à savoir en ordre décroissant de généralité : les actions symplectiques, les actions faiblement hamiltoniennes et les actions hamiltoniennes. Une connaissance des actions de groupes et de la géométrie symplectique étant prérequise, deux chapitres sont consacrés à des présentations élémentaires de ces sujets. Le cas des actions hamiltoniennes est étudié en détail au quatrième chapitre : l'importante application moment y est définie et plusieurs résultats concernant les orbites de la représentation coadjointe, tels que les théorèmes de Kirillov et de Kostant-Souriau, y sont démontrés. Le dernier chapitre se concentre sur les actions hamiltoniennes des tores, l'objectif étant de démontrer le théorème de convexité d'Atiyha-Guillemin-Sternberg. Une discussion d'un théorème de classification de Delzant-Laudenbach est aussi donnée. La présentation se voulant une introduction assez exhaustive à la théorie des actions hamiltoniennes, presque tous les résultats énoncés sont accompagnés de preuves complètes. Divers exemples sont étudiés afin d'aider à bien comprendre les aspects plus subtils qui sont considérés. Plusieurs sujets connexes sont abordés, dont la préquantification géométrique et la réduction de Marsden-Weinstein. / This Master thesis is concerned with some natural notions of group actions on symplectic manifolds, which are in decreasing order of generality : symplectic actions, weakly hamiltonian actions and hamiltonian actions. A knowledge of group actions and of symplectic geometry is a prerequisite ; two chapters are devoted to a coverage of the basics of these subjects. The case of hamiltonian actions is studied in detail in the fourth chapter : the important moment map is introduced and several results on the orbits of the coadjoint representation are proved, such as Kirillov's and Kostant-Souriau's theorems. The last chapter concentrates on hamiltonian actions by tori, the main result being a proof of Atiyah-Guillemin-Sternberg's convexity theorem. A classification theorem by Delzant and Laudenbach is also discussed. The presentation is intended to be a rather exhaustive introduction to the theory of hamiltonian actions, with complete proofs to almost all the results. Many examples help for a better understanding of the most tricky concepts. Several connected topics are mentioned, for instance geometric prequantization and Marsden-Weinstein reduction.
|
Page generated in 0.0703 seconds