Spelling suggestions: "subject:"convolutional neural networks""
11 |
Rozpoznání květin v obraze / Image based flower recognitionJedlička, František January 2018 (has links)
This paper is focus on flowers recognition in an image and class classification. Theoretical part is focus on problematics of deep convolutional neural networks. The practical part if focuse on created flowers database, with which it is further worked on. The database conteins it total 13000 plant pictures of 26 spicies as cornflower, violet, gerbera, cha- momile, cornflower, liverwort, hawkweed, clover, carnation, lily of the valley, marguerite daisy, pansy, poppy, marigold, daffodil, dandelion, teasel, forget-me-not, rose, anemone, daisy, sunflower, snowdrop, ragwort, tulip and celandine. Next is in the paper described used neural network model Inception v3 for class classification. The resulting accuracy has been achieved 92%.
|
12 |
Neuronové sítě pro doporučování knih / Deep Book RecommendationGráca, Martin January 2018 (has links)
This thesis deals with the field of recommendation systems using deep neural networks and their use in book recommendation. There are the main traditional recommender systems analysed and their representations are summarized, as well as systems with more advanced techniques based on machine learning. The core of the thesis is to use convolutional neural networks for natural language processing and create a hybrid book recommendation system. Suggested system includes matrix factorization and make recommendation based on user ratings and book metadata, including texts descriptions. I designed two models, one with bag-of-words technique and one with convolutional neural network. Both of them defeat baseline methods. On the created data set, that was created from the Goodreads, model with CNN beats model with BOW.
|
13 |
Neuronové sítě pro doporučování knih / Deep Book RecommendationGráca, Martin January 2018 (has links)
This thesis deals with the field of Recommendation systems using Deep Neural Networks and their use in book recommendation. There are the main traditional recommender systems analysed and their representations are summarized, as well as systems with more advancec techniques based on machine learning.. The core of the thesis is the use of convolutional neural networks for natural language processing and the creation of a book recommendation system. Suggested system make recommendation based on user data, including user reviews and book data, including full texts.
|
14 |
Image forgery detection using textural features and deep learningMalhotra, Yishu 06 1900 (has links)
La croissance exponentielle et les progrès de la technologie ont rendu très pratique le partage de données visuelles, d'images et de données vidéo par le biais d’une vaste prépondérance de platesformes disponibles. Avec le développement rapide des technologies Internet et multimédia, l’efficacité de la gestion et du stockage, la rapidité de transmission et de partage, l'analyse en temps réel et le traitement des ressources multimédias numériques sont progressivement devenus un élément indispensable du travail et de la vie de nombreuses personnes. Sans aucun doute, une telle croissance technologique a rendu le forgeage de données visuelles relativement facile et réaliste sans laisser de traces évidentes. L'abus de ces données falsifiées peut tromper le public et répandre la désinformation parmi les masses.
Compte tenu des faits mentionnés ci-dessus, la criminalistique des images doit être utilisée pour authentifier et maintenir l'intégrité des données visuelles. Pour cela, nous proposons une technique de détection passive de falsification d'images basée sur les incohérences de texture et de bruit introduites dans une image du fait de l'opération de falsification.
De plus, le réseau de détection de falsification d'images (IFD-Net) proposé utilise une architecture basée sur un réseau de neurones à convolution (CNN) pour classer les images comme falsifiées ou vierges. Les motifs résiduels de texture et de bruit sont extraits des images à l'aide du motif binaire local (LBP) et du modèle Noiseprint. Les images classées comme forgées sont ensuite utilisées pour mener des expériences afin d'analyser les difficultés de localisation des pièces forgées dans ces images à l'aide de différents modèles de segmentation d'apprentissage en profondeur.
Les résultats expérimentaux montrent que l'IFD-Net fonctionne comme les autres méthodes de détection de falsification d'images sur l'ensemble de données CASIA v2.0. Les résultats discutent également des raisons des difficultés de segmentation des régions forgées dans les images du jeu de données CASIA v2.0. / The exponential growth and advancement of technology have made it quite convenient for people to share visual data, imagery, and video data through a vast preponderance of available platforms. With the rapid development of Internet and multimedia technologies, performing efficient storage and management, fast transmission and sharing, real-time analysis, and processing of digital media resources has gradually become an indispensable part of many people’s work and life. Undoubtedly such technological growth has made forging visual data relatively easy and realistic without leaving any obvious visual clues. Abuse of such tampered data can deceive the public and spread misinformation amongst the masses. Considering the facts mentioned above, image forensics must be used to authenticate and maintain the integrity of visual data. For this purpose, we propose a passive image forgery detection technique based on textural and noise inconsistencies introduced in an image because of the tampering operation.
Moreover, the proposed Image Forgery Detection Network (IFD-Net) uses a Convolution Neural Network (CNN) based architecture to classify the images as forged or pristine. The textural and noise residual patterns are extracted from the images using Local Binary Pattern (LBP) and the Noiseprint model. The images classified as forged are then utilized to conduct experiments to analyze the difficulties in localizing the forged parts in these images using different deep learning segmentation models.
Experimental results show that both the IFD-Net perform like other image forgery detection methods on the CASIA v2.0 dataset. The results also discuss the reasons behind the difficulties in segmenting the forged regions in the images of the CASIA v2.0 dataset.
|
15 |
Fast and Accurate Image Feature Detection for On-The-Go Field Monitoring Through Precision Agriculture. Computer Predictive Modelling for Farm Image Detection and Classification with Convolution Neural Network (CNN)Abdullahi, Halimatu S. January 2020 (has links)
This study aimed to develop a novel end-to-end plant diagnosis model for the
analysis of plant health conditions in near real-time to optimize the rate of
production on farmlands for an intensive, yet environmentally safe farming
production to preserve the natural environment.
First, field research was conducted to determine the extent of the problems
faced by farmers in agricultural production. This allowed us to refine the
research statement and the level of technology involved in the production
processes. The advantages of unmanned aerial systems were exploited in the
continuous monitoring of farm plantations to develop automated and accurate
measures of farm conditions.
To this end, this thesis applies the Precision Agricultural technology as a data based management system that takes into account spatial variations by using
the Global Positioning System, Geographical Information System, remote
sensing, yield monitors, mapping, and guidance system for variable rate
applications.
An unmanned aerial vehicle embedded with an optic and radiometric sensor
was used to obtain high spectral resolution images of plantation status during
normal production/growth cycle. Then, an ensemble of classifiers with Convolution Neural Networks (CNN) was used as off the shelf feature extractor
to train images to develop an end-to-end feature detection and multiclass
classification system for plant overall health’s conditions. Whereby previous
works have concentrated on using CNN as off the shelf feature extractor and
model training to detect only plant diseases from plants.
To date, no research has yet been carried out to develop an end-to-end model
for the overall plant diagnosis system. Previous studies focused on the
detection of diseases at any given time, making it difficult to implement
comprehensive real-time PA systems.
Applying the pretrained model to the new images showed that the model can
accurately predict any plant condition with an average of 97% accuracy.
|
Page generated in 0.1278 seconds