• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analise das instabilidades termo-hidraulicas em um circuito operando em regime de circulacao natural bi-fasico

SESINI, PAULA A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:43:02Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:08:23Z (GMT). No. of bitstreams: 1 06171.pdf: 4113918 bytes, checksum: f80c43f20a8b10129dced614d40007ba (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
12

Analise das instabilidades termo-hidraulicas em um circuito operando em regime de circulacao natural bi-fasico

SESINI, PAULA A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:43:02Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:08:23Z (GMT). No. of bitstreams: 1 06171.pdf: 4113918 bytes, checksum: f80c43f20a8b10129dced614d40007ba (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
13

Experimental Evaluation of Innovative Thermal Energy Storage Options for a Hypersonic Non-Airbreathing Vehicle's Internal Loads

Arbolino, John Christopher 28 August 2023 (has links)
Managing the thermal loads inside a non-airbreathing hypersonic vehicle is particularly difficult. The heat generated by the power electronics, avionics, etc. must be removed so that the components do not exceed their maximum temperatures. These vehicles cannot dump the waste heat into fuel or ram air because they carry no fuel and do not have provisions for ram air. This means that the thermal energy resulting from the heat generated must be dumped into an onboard heat sink. Existing solutions to this problem have been passive systems based on solid-liquid phase change materials (PCMs), which store thermal energy as they melt. Since space is at a premium, a heat sink must store a lot of energy per unit volume, while keeping components below their maximum temperature. In this project, three heat sink concepts are tested, i.e., one based on PCMs, a second on thermal to chemical (TTC) energy storage, and a third on a hybrid combination of the first two. For the first, three different PCMs are tested and for the second a single endothermic chemical reaction. The hybrid PCM/TTC concept consists of a single PCM which plays the dual role of PCM and reactant in the endothermic chemical reaction of the TTC energy storage. To enhance heat sink performance, the use of thermoelectric generators (TEGs) and a local coolant loop are investigated. The advantage of the former is that they transform waste heat into usable electricity, reducing the amount of thermal energy that needs to be stored by the heat sink. The advantage of the latter is that it results in a more uniform cooling of the heat source and more uniform heating of the heat sink. Prototypes of each of the heat sink concepts and the coolant loop are designed, built, and tested. Experimental results indicate that all the solutions tested in this project outperform widely used paraffin heat sink technologies on an energy per unit volume basis. Our experiments also show that a local coolant loop is indeed advantageous and that current off-the-shelf thermoelectric generators do not generate enough power to offset the power requirements of the coolant loop. Significant improvements in the ZT factor of the thermoelectric materials used by the TEG would be required. / Master of Science / All electronics produce waste heat and have a maximum operating temperature above which they fail due to overheating. Heat sinks absorb the waste heat and prevent overheating. Non-airbreathing hypersonic vehicles do not have natural heat sinks like intake air or liquid fuel which are commonly used as heat sinks in airbreathing vehicles. Heat cannot be transferred to the environment due to the high temperatures caused by the friction of hypersonic air travel. This means that all waste heat must absorbed by an onboard heat sink. Existing heat sinks in non-airbreathing hypersonic vehicles use paraffin based solid-liquid phase change materials (PCMs) which store thermal energy as they melt. Three novel heat sink options are evaluated in this project, hydrated salt PCMs which absorb energy as they melt, a chemical reaction which absorbs heat as it reacts, and a hybrid system which incorporates one of the hydrates salt PCM as a reactant in the chemical reaction. Because space is at a premium, these options are evaluated by the amount of energy they can absorb (kilojoules) per unit volume (in3) while keeping the electronics below their maximum temperature. To enhance heat sink performance, the use of thermoelectric generators (TEGs) and a local coolant loop are investigated. The advantage of the former is that they transform waste heat into usable electricity, reducing the amount of thermal energy that needs to be stored by the heat sink. The advantage of the latter is that it results in a more uniform cooling of the electronics and more uniform heating of the heat sink. Prototypes of each of the heat sink concepts and the coolant loop are designed, built, and tested. Experimental results indicate that all the solutions tested in this project outperform widely used paraffin heat sink technologies on an energy per unit volume basis. Our experiments also show that a local coolant loop is indeed advantageous and that current off-the-shelf thermoelectric generators do not generate enough power to offset the power requirements of the coolant loop. Significant improvements in the state of the art of thermoelectric materials would be required for TEGs to generate enough electricity from our waste heat load to power the local coolant loop.

Page generated in 0.0509 seconds