• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cooperative Estimation for a Vision-Based Multiple Target Tracking System

Sakamaki, Joshua Y. 01 June 2016 (has links)
In this thesis, the Recursive-Random Sample Consensus (R-RANSAC) algorithm is applied to a vision-based, cooperative target tracking system. Unlike previous applications, which focused on a single camera platform tracking targets in the image frame, this work uses multiple camera platforms to track targets in the inertial or world frame. The process of tracking targets in the inertial frame is commonly referred to as geolocation.In practical applications sensor biases cause the geolocated target estimates to be biased from truth. The method for cooperative estimation developed in this thesis first estimates the relative rotational and translational biases that exist between tracks from different vehicles. It then accounts for the biases and performs the track-to-track association, which determines if the tracks originate from the same target. The track-to-track association is based on a sliding window approach that accounts for the correlation between tracks sharing common process noise and the correlation in time between individual estimation errors, yielding a chi-squared distribution. Typically, accounting for the correlation in time requires the inversion of a Nnx x Nnx covariance matrix, where N is the length of the window and nx is the number of states. Note that this inversion must occur every time the track-to-track association is to be performed. However, it is shown that by making a steady-state assumption, the inverse has a simple closed-form solution, requiring the inversion of only two nx x nx matrices, and can be calculated offline. Distributed data fusion is performed on tracks where the hypothesis test is satisfied. The proposed method is demonstrated on data collected from an actual vision-based tracking system.A novel method is also developed to cooperatively estimate the location and size of occlusions. This capability is important for future target tracking research involving optimized path planning/gimbal pointing, where a geographical map is unavailable. The method is demonstrated in simulation.
2

Cooperative Navigation of Fixed-Wing Micro Air Vehicles in GPS-Denied Environments

Ellingson, Gary James 05 November 2019 (has links)
Micro air vehicles have recently gained popularity due to their potential as autonomous systems. Their future impact, however, will depend in part on how well they can navigate in GPS-denied and GPS-degraded environments. In response to this need, this dissertation investigates a potential solution for GPS-denied operations called relative navigation. The method utilizes keyframe-to-keyframe odometry estimates and their covariances in a global back end that represents the global state as a pose graph. The back end is able to effectively represent nonlinear uncertainties and incorporate opportunistic global constraints. The GPS-denied research community has, for the most part, neglected to consider fixed-wing aircraft. This dissertation enables fixed-wing aircraft to utilize relative navigation by accounting for their sensing requirements. The development of an odometry-like, front-end, EKF-based estimator that utilizes only a monocular camera and an inertial measurement unit is presented. The filter uses the measurement model of the multi-state-constraint Kalman filter and regularly performs relative resets in coordination with keyframe declarations. In addition to the front-end development, a method is provided to account for front-end velocity bias in the back-end optimization. Finally a method is presented for enabling multiple vehicles to improve navigational accuracy by cooperatively sharing information. Modifications to the relative navigation architecture are presented that enable decentralized, cooperative operations amidst temporary communication dropouts. The proposed framework also includes the ability to incorporate inter-vehicle measurements and utilizes a new concept called the coordinated reset, which is necessary for optimizing the cooperative odometry and improving localization. Each contribution is demonstrated through simulation and/or hardware flight testing. Simulation and Monte-Carlo testing is used to show the expected quality of the results. Hardware flight-test results show the front-end estimator performance, several back-end optimization examples, and cooperative GPS-denied operations.

Page generated in 0.1119 seconds