101 |
EFFECT OF COPPER DEFICIENCY ON THE APOLIPOPROTEIN-E-RICH HIGH DENSITY LIPOPROTEIN FRACTION IN RATS.Croswell, Susan Corrine. January 1984 (has links)
No description available.
|
102 |
Sulfide filming and flotation of chrysocollaFaust, William A., 1916- January 1938 (has links)
No description available.
|
103 |
Some studies on the behaviour of copper in organic and mineral soils.Makhan, Daler Satindire. January 1968 (has links)
No description available.
|
104 |
The free energy of cupric chlorideNielsen, Ralph Frederick, January 1927 (has links)
Thesis (Ph. D.)--University of Nebraska, 1927. / Caption title: The free energy of cupric chloride : the standard potential of copper and the activity coefficient of copper sulfate. Includes bibliographical references (p. [15]).
|
105 |
Some studies on the behaviour of copper in organic and mineral soils.Makhan, Daler Satindire. January 1968 (has links)
No description available.
|
106 |
Biological indicators of copper-induced stress in soilDu Plessis, Keith R. (Keith Roland) 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2002. / ENGLISH ABSTRACT: The concentrations of copper (Cu) in vineyard soils of the Western Cape range from 0.1
to 20 ppm. However, more than 160 tons of the fungicide copper oxychloride are
annually being sprayed on these vineyards. This has raised concerns that Cu may
accumulate in these soils, resulting in a negative impact on the soil biological processes,
especially since the soils in the Western Cape are slightly acidic, making Cu more mobile
and available for soil organisms than would have been the case in alkaline soils.
The goal of the initial part of this study was therefore to identify those soil microbial
communities indigenous to the Western Cape, which are most susceptible to Cu-induced
stress as a result of the addition of copper oxychloride. These potential bioindicators of
Cu-induced stress were first searched for in uncultivated agricultural soil from
Nietvoorbij experimental farm. Consequently, a series of soil microcosms was prepared
by adding various concentrations of Cu as a component of copper oxychloride, to each of
eight aliquots of soil: 0 (control), 10, 20, 30, 40, 50, 100, 500 and 1000 ppm. The
resulting concentrations of exchangeable Cu in these microcosms were found to be 2
(control), 12,23,34,42,59, 126,516 and 1112 ppm. Selected microbial communities in
each microcosm were subsequently monitored over a period of 245 days. It was found
that the culturable microbial numbers did not provide a reliable indication of the effect of
Cu on community integrity. However, analyses of terminal-restriction fragment length
polymorphism (T-RFLP) community fingerprints and especially analyses of the whole
community metabolic profiles, revealed that shifts in the soil microbial communities took
place as the Cu concentration increased. Direct counts of soil protozoa also revealed that
the addition of Cu to the soil impacted negatively on the numbers of these eukaryotes.
To confirm these findings in other soil ecosystems, the impact of copper oxychloride on
whole community metabolic profiles and protozoan numbers were investigated in soils
from Koopmanskloof commercial farm and Nietvoorbij experimental farm. These
potential bioindicators were subsequently monitored in a series of soil microcosms
prepared for each soil type by adding the estimated amounts of 0 (control), 30, 100 and 1000 ppm Cu as a component of copper oxychloride to the soil. The results confirmed
the fmdings that elevated levels of copper impact negatively on the metabolic potential
and protozoan numbers of soil.
Consequently, it was decided to investigate a combination of protozoan counts and
metabolic profiling as a potential bioindicator for Cu-induced stress in soil. Data
collected from all the microcosms containing exchangeable Cu concentrations ranging
from 1 ppm to 1112 ppm was used to construct a dendrogram using carbon source
utilization profiles in combination with protozoan counts. It was found that the
microcosms grouped into clusters, which correlated with the concentration of
exchangeable Cu in the soil. Under the experimental conditions used in this study, the
combination of protozoan counts and metabolic profiling seemed to be a reliable
indicator of Cu-induced stress. However, this bioindicator must be further investigated in
other soil types using other types of stress inducing pollutants.
In addition to the above fmdings it was also found that the numbers of soil protozoa was
particularly susceptible to Cu-induced stress in soils with a low soil pH. This is in
agreement with the fmdings of others on the bio-availability of heavy metals in low pH
soils. In these soils, nutrient cycling as a result of protozoan activity, may therefore be
particularly susceptible to the negative impact of copper to the soil. / AFRIKAANSE OPSOMMING: Die konsentrasies van koper (Cu) in wingerdgronde van die Wes-Kaap wissel tussen 0.1
en 20 dpm. Meer as 160 ton van die fungisied koper-oksichloried word egter jaarliks op
dié wingerde gespuit, wat kommer laat ontstaan het oor die moontlike akkumulasie van
Cu in dié grond en die gevaar van 'n negatiewe impak op die biologiese prosesse in die
grond. Die gevaar word vererger deur die feit dat die Wes-Kaapse grond effens suur is,
wat Cu meer mobiel en beskikbaar maak vir grondorganismes as wat die geval sou wees
in alkaliese grond.
Die eerste doelstelling van hierdie studie was dus om die mikrobiese gemeenskappe in
die grond, wat inheems is aan die Wes-Kaap, te identifiseer wat die meeste vatbaar is vir
Cu-geïnduseerde stres as gevolg van die toevoeging van koper-oksichloried. Hierdie
potensiële bioindikatore van Cu-geïnduseerde stres is eerstens gesoek in onbewerkte
landbougrond van die Nietvoorbij-proefplaas. 'n Reeks grondmikrokosmosse is
gevolglik berei deur verskillende konsentrasies Cu, as 'n komponent van koperoksichloried,
by elk van agt hoeveelhede grond te voeg naamlik 0 (kontrole), 10,20, 30,
40, 50, 100, 500 en 1000 dpm. Die gevolglike konsentrasies van uitruilbare Cu in hierdie
mikrokosmosse was 2 (kontrole), 12, 23, 34, 42, 59, 126, 516 en 1112 dpm.
Geselekteerde mikrobiese gemeenskappe in elke mikrokosmos is vervolgens oor 'n
tydperk van 245 dae bestudeer. Daar is gevind dat die kweekbare mikrobiese tellings nie
'n betroubare aanduiding kon gee van die uitwerking van Cu op gemeenskapsintegriteit
nie. Die ontledings van terminale-restriksie fragment lengte polymorfisme (T-RFLP)
gemeenskapsvingerafdrukke en veral van die metaboliese profiele van die totale
gemeenskap, het getoon dat verskuiwings in die grondmikrobiese gemeenskappe
plaasgevind het met 'n toename in Cu-konsentrasies. Direkte tellings van grondprotosoë
het ook aangedui dat die toevoeging van Cu tot die grond 'n negatiewe uitwerking op die
getalle van hierdie eukariote gehad het.
Om dié resultate te bevestig, is die impak van koper-oksichloried op die metaboliese
profiele van totale gemeenskappe en protosoë-getalle in ander grond-ekosisteme vervolgens bestudeer deur grond van die kommersiële plaas Koopmanskloof en die
Nietvoorbij-proefplaas te gebruik. Dié potensiële bioindikatore is vervolgens bestudeer
in 'n reeks grondmikrokosmosse, wat vir elke grondtipe voorberei is deur die toevoeging
van beraamde hoeveelhede van 0 (kontrole), 30, 100 en 1000 dpm Cu as 'n komponent
van koper-oksichloried. Die resultate het die bevindings bevestig dat verhoogde vlakke
van Cu 'n negatiewe uitwerking het op die metaboliese potensiaal en op die protosoëgetalle
in die grond.
Daar is gevolglik besluit om 'n kombinasie van protosoë-tellings en metaboliese profiele
te ondersoek as 'n potensiële bioindikator van Cu-geïnduseerde stres in grond. Data van
al die mikrokosmosse wat uitruilbare Cu bevat, wisselend van 1 dpm tot 1112 dpm, is
gebruik om 'n dendrogram te konstrueer wat koolstofbronbenuttingsprofiele in
kombinasie met protosoë tellings gebruik. Daar is gevind dat die mikrokosmosse groepe
vorm wat korrelleer met die konsentrasie uitruilbare Cu in die grond. Onder die
eksperimentele kondisies wat in dié studie gebruik is, wil dit voorkom of die kombinasie
van protosoë-tellings en metaboliese profiele 'n betroubare indikator van Cugeïnduseerde
stres is. Hierdie bioindikator moet egter verder in ander grondtipes en met
ander tipes stres-induserende besoedeling ondersoek word.
By bogenoemde bevindings is daar ook gevind dat die getalle grondprotosoë besonder
gevoelig is vir Cu-geïnduseerde stres in grond met In lae pH. Dit is in ooreenstemming
met die bevindings van andere met betrekking tot die bio-beskikbaarheid van swaar
metale in grond met 'n lae pH. In dié tipe grond mag nutriëntsiklering as gevolg van
protosoë aktiwiteit besonder gevoelig wees vir die negatiewe uitwerking van koper in die
grond.
|
107 |
Characterisation of a 4BS.4BL-5RL wheat rye translocation to improve copper efficiency of bread wheatLeach, Richard Charles January 2004 (has links)
Copper deficiency causes significant annual losses in grain yield due to poor grain set. Cereals such as wheat and barley are particularly susceptible to low copper soils whereas,crops such as rye and triticale are better able to grow and yield under such conditions of nutrient stress. The ability of rye and triticale, which carries a complete set of rye chromosomes, to tolerate low copper conditions has been attributed to a gene on rye chromosome 5R. Wheat-rye translocation lines have previously been produced carrying segments of the long arm of chromosome 5 of rye (5RL). Although these lines have expressed copper efficiency in University of Adelaide trials, until now they have been considered agronomically inferior and so have not been used as commercial cultivars. The physical size of rye segment of the 4BS.4BL-5RL translocation in a Chinese Spring background derived from the Cornell Wheat Selection 82a1-2-4-7 was measured using GISH (genomic in situ hybridization) and found to be 16% of the long arm. The size of this translocation was similar to GISH measurements of another 4BS.4BL-5RL translocation in Viking wheat background, although both these lines arose spontaneously and at different times. Molecular maps of both 4BS.4BL-5RL translocations in the two different wheat backgrounds were developed and used to screen for rare recombinants between wheat and rye in a background homozygous for the Sears' ph1b mutant. The maps revealed the approximate genetic location of the translocation breakpoint involved in these two 4BS.4BL-5RL translocations to be similar even though they are known to have arisen at different times and in different experimental populations. The similarity of these translocations suggests a unique property of the region at or near the translocation breakpoint that could be responsible for their similarity and spontaneous formation. After screening 703 critical seedlings for evidence of recombination between the 5RL segment and wheat homoeologues, no confirmed recombinants were identified. Lines containing the 4BS.4BL-5RL translocation were shown to yield equally as well as their recurrent parent under normal field conditions. In addition the presence of the 4BS.4BL-5RL had no adverse effects on a range of grain quality characteristics measured in these lines. A pot trial using lines derived from a cross between the CSHN translocation and the wheat cultivar Warigal (five backcrosses) revealed that they provided copper-efficiency even under the severest of deficiency conditions. While the results of this pot trial did not show the outstanding copper efficiency previously observed in these lines, the translocation did consistently out yield the recurrent parent under severe copper deficiency conditions. Finally, a reliable PCR marker was developed for the rapid identification of lines containing the distal portion of the 5RL chromosome. / Thesis (Ph.D.)--School of Agriculture and Wine, 2004.
|
108 |
Geology, alteration, and mineralization of the Copper Basin porphyry copper deposit, Yavapai County, ArizonaChristman, Jerry Lynn, 1947- January 1978 (has links)
No description available.
|
109 |
Structural and Biochemical Studies of the Metal Binding Protein CusF and its Role in Escherichia coli Copper HomeostasisLoftin, Isabell January 2008 (has links)
Biometals such as copper, cobalt and zinc are essential to life. These transition metals are used as cofactors in many enzymes. Nonetheless, these metals cause deleterious effects if their intracellular concentration exceeds the cells' requirement. Prokaryotic organisms usually employ efflux systems to maintain metals in appropriate intracellular concentrations.The Cus system of Escherichia coli plays a crucial part in the copper homeostasis of the organism. This system is a tetrapartite efflux system, which includes an additional component compared to similar efflux systems. This fourth component is a small periplasmic protein, CusF. CusF is essential for full copper resistance, yet its role within the Cus system has not been characterized. It could potentially serve in the role of a metallochaperone or as a regulator to the Cus system.To gain insight into the molecular mechanism of resistance of this system, I have structurally and biochemically characterized CusF. Using X-ray crystallography I determined the CusF structure. CusF displays a novel fold for a copper binding protein. Through multiple sequence alignment and NMR chemical shift experiments, I proposed a metal binding site in CusF, which I confirmed through determination of the structure of CusF-Ag(I). CusF displays a novel coordination of Ag(I) and Cu(I) through a Met2His motif and a cation-pi interaction between the metal ion and a tryptophan sidechain. Furthermore, I have shown that CusF binds Cu(I) and Ag(I) specifically and tightly.I investigated the role of the tryptophan at the binding site to establish its effect on metal binding and function of CusF. I have shown through competitive binding assays, NMR studies and through collaborative EXAFS studies that the tryptophan plays an essential role in CusF metal handling. The affinity of CusF for Cu(I) is influenced by this residue. Moreover, the tryptophan also caps the binding site such that oxidation of the bound metal as well access to adventitious ligands is prevented. In summary, these findings show that the structure and metal site of CusF are unique and are specifically designed to perform the function of CusF as a metallochaperone to the Cus system.
|
110 |
The effect of ion-plating and ion implantation on the fatigue behavior of polycrystalline copperKujore, Adesola Oludotun 08 1900 (has links)
No description available.
|
Page generated in 0.0342 seconds