31 |
Evaluation of a novel method to investigate diffusion between copper-zinc alloys and cemented carbidesLarsson, André January 2022 (has links)
When slow wear mechanisms are studied it is important to examine slower processes, such as diffusion. Such processes can have a significant impact over time and can cause other phases to form, which can have a large effect on the wear. This thesis has investigated the diffusion that is believed to take place between brass and cemented carbide tools. This was done to further the understanding of the slow atomic wear which if properly understood, could lead to solutions that would increase the lifetime of the tools. The diffusion pairs were made from a tribological contact and then heat treated to speed up the diffusion process. Different temperatures and times were tested, from 400 °C for 3 h to 700 °C for 24 h. The samples were analysed with SEM and EDS both before and after the heat treatment, to see if diffusion had taken place. However, because of many unexpected processes and reactions the analysis could not confirm that diffusion had taken place. The transportation of Cu at the higher temperatures was much faster than expected, and in some samples, Cu could not be detected after the heating. Since the surface was so mobile, the slower diffusion process did not have time to take place. Many improvements for future experiments are suggested to be able to observe the diffusion, such as depositing a thin film or adding more work material.
|
32 |
Thin Film Solar Cells with Earth Abundant Elements: from Copper Zinc Tin Sulfide to Organic-Inorganic Hybrid Halide PerovskiteYu, Yue January 2017 (has links)
No description available.
|
33 |
Sorpce směsí kovových iontů na přírodním lignitu / Sorption of metal ions mixture on natural ligniteDoskočil, Leoš January 2009 (has links)
Sorption of quaternary metal ions (Pb2+, Cu2+, Cd2+ and Zn2+) was carried out on lignite from the South Moravia. Following experiments were tested: kinetic sorption, dependence of sorption on pH, initial concentration, temperature, effect of electrolytes (KNO3 and NaCl) and desorption in deionized water. Sorption studies was carried out in quaternary mixtures and in the case of inicial concentration effect additional in a single-component solution. The batch sorption experiments was used. Sorption time was 24 hour, although concentration of ions was a near equilibrium after two hour. As the optimal pH was determined pH 5. The order of affinity by lignite was obtained Pb >> Cd > Zn > Cu for the sorption of metals in the single-component solution and the order was Pb > Cu > Zn > Cd for the sorption of mixture of metals. The maximum adsorptium capacities from single solutions were for Pb 97,82 mg/g, Cd 60,34 mg/g, Zn 49,88 mg/g and Cu 30,28 mg/g and in the case of ones from mixture solutions were for Pb 39,03 mg/g, Cu 25,94 mg/g, Zn 15,21 mg/g and Cd 5,18 mg/g. Experimental data have been analysed using Langmuir and Freundlich model. Thermodynamic values H°, S° and G° were calculated. Desorption test showed that desorption efficiency is 0–3 %. NaCl had the greatest influence on sorption from electrolytes. On the basis obtained results we can say that metals are binding to lignite in particular due to chemical interactions. Lignite is s suitable as a sorption material for metal ions especially in the field of low concentrations.
|
34 |
Interakce redukovaného a oxidovaného glutathionu s mědí, železem a zinkem / Interactions of reduced and oxidized glutathione with copper, iron and zincSalanciová, Ingrid January 2020 (has links)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmaceutical Botany Candidate: Ingrid Salanciová Supervisor: PharmDr. Jana Karlíčková, Ph.D. Title of Thesis: Interactions of reduced and oxidized glutathione with copper, iron and zinc Copper (Cu), iron (Fe) and zinc (Zn) are important trace elements that are necessary for proper function of the body. Excess but also the lack of these metals may lead to pathological conditions. Glutathione is the main antioxidant in the human body so it is expected to protect the organism against concequences of metal excess. Glutathione occurs in the reduced (GSH) and oxidized state as glutathione disulfide (GSSG) in the organism, both states forming an important redox system. On the other hand, glutathione can reduce these metals so that could participate in the formation of free radicals (metal based Fenton reaction). In this diploma thesis, was tested the ability of reduced and oxidized glutathione to interact with Fe, Cu and Zn in various (patho) physiological pH conditions was tested by using in vitro spectrophotometric competitive methods. Interactions include not only the chelation of Cu, Fe and Zn ions, but also their reductive activity toward Cu2+ and Fe3+ cations. Hematoxylin, bathocuproinedisulfonic acid disodium salt, ferrozine...
|
35 |
Effects of using wastewater and biosolids as nutrient sources on accumulation and behaviour of trace metals in Vietnamese soils /Khai, Nguyen Manh, January 2007 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv., 2007. / Härtill 4 uppsatser.
|
36 |
A Study of Open Orbits In Gallium, Cadmium, Zinc and Copper By An Induced Torque MethodCook, James Robert 10 1900 (has links)
<p> The theoretical treatment of the induced torque problem is discussed, and equations describing the functional form of the torque amplitude are derived on the basis of a model calculation valid in the high field limit. This functional form is applied to a detailed interpretation of the open orbit structure in gallium, cadmium, zinc and copper. </p>
<p> An investigation of the open orbit structure in gallium at l.4°K using this technique has yielded direct information on the connectivity of the sixth-band hole surface. This surface supports a k(c)-trajectory for all field directions in the ab plane, except within 0.1° of the a-axis. A k(a)-trajectory of lower conductivity is reported over a 10° range of field direction centred (32°±2°) from the b-axis in the be plane. These data, in addition to the highly anisotropic amplitude and field dependence of the k(c) -trajectory, require that this surface contact the Brillouin zone boundary at both the k(a) -and k(c) -faces. The present data are compared with available models of the sixth band hole surface, and are found to be in excellent agreement with the predictions of recent pseudopotential calculations . The possibility of magnetic breakdown in the k(c)-trajectory for B|| b-axis is discussed. Finally, a non-linear frequency dependence, and an anisotropic non-quadratic field dependence are understood to occur through the long mean free path and short skin depth parameters in gallium at l.4°K. </p>
<p> In cadmium, the induced torque amplitude due to the [0001]-open trajectory tends to saturation at high field intensities for all observation directions. This effect is attributed to magnetic breakdown between the first-and secondhand hole surfaces through the spin·-orbit interaction energy
'gap near the H-symmetry point in the AHL plane. This magnetic breakdown effect is analyzed on the basis of a linear chain model and the theoretical curves of Falicov and Sievert. Detailed analysis indicates the possibility of two separate breakdown probabilities across the HL and HA gaps; for <1010> directions , breakdown fields of 10.8 k0e and (as low as) 0.72 k0e are indicated . A similar range of breakdown fields is indicated for all field directions in the (0001) plane. </p>
<p> In zinc, the induced torque technique is used to investigate magnetic breakdown effects in the [0001]-trajectory for specific field directions in the basa l plane. These effects are attributed to the onset of partial breakdown between the monster and cap surfaces near the H-symrnetry points, for field intensities above 16 kOe. The linear chain model is shown to be an inappropriate description of breakdown effects in zinc. An onset field of 16 kOe for <1120> is determined; no breakdown is observed along <lOIO> below 20 kOe. In addition, magnetic breakdown effects occurring in the basal orbits of zinc were investigated. The general monotonic rise in torque amplitude with field intensities is fitted to the theoretical expressions of Falicov, Pippard, and Sievert. The giant quantum oscillations arising through coherence-effect modulation of the breakdown probability are shown consistent with earlier data. </p>
<p> The technique is applied to a general survey of the various types of open orbits existing in copper, and the general applicability of the sample torque equations to both compensated and uncompensated metals is demonstrated. </p> / Thesis / Doctor of Philosophy (PhD)
|
37 |
Исследование механических свойств труб из латуни ЛМцАКНХ, выпускаемых ОАО РЗОЦМ для нужд отечественного автомобилестроения : магистерская диссертация / Investigation of the pipes mechanical properties of brass CuZnMnAlSiNiCr, produced by JSC Revda Non-Ferrous Metals Processing Works for the needs of Russian automotive industryШешукова, Ю. А., Sheshukova, Y. A. January 2017 (has links)
Представлен литературный обзор в области свойств сплавов из сложнолегированных латуней и заготовок из них. В экспериментальной части работы представлены результаты исследований, направленных на изучение механических свойств сложнолегированной латуни CuZnMnAlSiNiCr в горячепрессованном состоянии. Выполнена статистическая обработка результатов измерений. Наблюдается значительная дисперсия механических свойств, что объяснено сложностью химического состава, фазового и структурного состояния сплава. Обнаружено проявление анизотропии. / A literature review is given in the field of properties of alloys from complex-alloyed brasses and blanks from them. The experimental part of the paper presents the results of studies aimed at studying the mechanical properties of complex-alloyed brass CuZn30Al2Mn3SiNiCr in the hot-extruded state. Statistical processing of measurement results is performed. A significant dispersion of mechanical properties is observed, which is explained by the complexity of the chemical composition, phase and structural state of the alloy. Anisotropy is observed.
|
38 |
Sinteza, strukturna, fizičko-hemijska i biološka karakterizacija novih N-heterocikličnih liganada i njihovih kompleksa sa jonima prelaznih metala / Synthesis, structural, physico-chemical and biological characterization of N-heterocyclic ligands and their complexes with transition metal ionsMađari Jožef 08 October 2018 (has links)
<p>Opisane su sinteze novih liganada bis(ftalazin-1hidrazon)-2,6-diacetilpiridna (Hz<sub>2</sub>DAP·2HCl), bis(3-hlorpiridazin-6-hidrazon)-2,6-diacetilpiridina (Hp<sub>2</sub>DAP), 3-hlorpiridazin-6-hidrazon di(2-piridil) ketona (HpDPK), ftalazin-1-hidrazon di(2-piridil)<br />ketona (HzDPK) i ftalazin-1-hidrazon piridin-2-karbaldehida (HzPY). Zajedničko svojstvo dobijenih liganada je što sadrže piridinski i diazinski prsten i sadrže samo donorne atome azota. Tokom nastajanja kompleksa dolazi do deprotonacije liganada. Svi ligandi su okarakterisani elementalnom analizom, termoanalitičkim metodama i metodom IR spektroskopije, dok neki i metodom NMR spektroskopije kao i rendgenskom strukturnom analizom.Za sintezu koordinacionih jedinjenja primenjeni soli Co(II), Ni(II), Cu(II) i Zn(II). Dobijeni kompleksi su okarakterisani elementalnom analizom, konduktomerijskim i magnetnim merenjima, IR spektroskopijom i termoanalitičkim metodama. Barem jedan kompleks iz svake serije je okarakterisan i rendgenskom strukturnom analizom. Urađena su i ispitivanja antimikrobne aktivnosti odabranih jedinjenja prema predstavnicima grampozitivnih i gram-negativnih bakterija i kulturu kvasca. Pored toga, urađena su i ispitivanja citotoksične,antiproliferativne i inhibitorne aktivnosti jedinjenja prema roditeljskim i multirezistentnim T-limfomnim ćelijama kancera. Utvrđeno je da neka jedinjenja pokazuju izrazito mikrobicidno, citotoksično, antiproliferativno i inhibitorno dejstvo.</p> / <p>The synthesis of new ligands dihydrochloride salt of 2,6-diacetylpyridne bis(phthalazine-1hydrazone) (Hz<sub>2</sub>DAP•2HCl), 2,6-diacetylpiridine bis(3- chloropyridazine-6-hydrazone) (Hp<sub>2</sub>DAP), di(2-pyridyl)ketone 3-chloropyridazine- 6-hydrazone (HpDPK), di(2-pyridyl)ketone phthalazine-1-hydrazone (HzDPK) and pyridine-2-carbaldehide phthalazine-1-hydrazone (HzPY) have been described. All the ligands contain pyridine and diazine core and all of them have only nitrogen donor atoms. During the complex formation the deprotonation of ligands takes places. All of the ligands have been characterized by elemental analysis,thermoanalytical methods and IR spectroscopy. In some cases also by NMR spectroscopy and X-ray structural analysis.Co(II), Ni(II), Cu(II) and Zn(II) salts were used for the synthesis of the coordinational compounds. The obtained complexes were characterized by elemental analysis, molar conductivity and magnetic measurements, IR spectroscopy and thermoanalytical methods. At least one complex of each series were characterized by X-ray structural analysis.The antimicrobial activity of some of the compounds toward Gram-positive/Gram- negative bacteria furthermore, the cytotoxic, antiproliferative and inhibitory activity toward sensitive parental andmultiresistant T-lymphoma cancer cells have also been carried out. It can be concluded that some of the compounds exhibit outstanding antimicrobial, cytotoxic, antiproliferative, and inhibitory activity.</p>
|
39 |
A Computational Study of Structural and Thermo-Mechanical Behavior of Metallic NanowiresSutrakar, Vijay Kumar January 2013 (has links) (PDF)
This thesis is an attempt to understand ways to improve thermo-mechanical and structural properties of nano-structured materials. A detailed study on computational design and analysis of metallic nanowires is carried out. Molecular dynamic simulation method is applied. In particular, FCC metallic nanowires, NiAl, and CuZr nanowires are studied. Various bottom-up approaches are suggested with improved structural and thermo¬mechanical properties.
In the first part of the thesis, Cu nanowires are considered. Existence of a novel and stable pentagonal multi-shell nanobridge structure of Cu under high strain rate tensile loading is reported. Such a structure shows enhanced mechanical properties. A three-fold pseudo-elastic-plastic shape recovery mechanism in such nanowires is established. This study also shows that the length of the pentagonal nanobridge structures can be characterized by its inelastic strain. It is also reported that an initial FCC structure is transformed into a new HCP structure. The evidence of HCP structure is confirmed with the help of experimental data published in the literature. Subsequent to the above study, a novel mechanism involving coupled temperature-stress dependent reorientation in FCC nanowires is investigated. A detailed map is generated for size dependent stress-temperature induced solid-solid reorientation in Cu nanowires.
In the second part of the thesis, deformation mechanisms in NiAl based intermetallic nanowires are studied. A novel mechanism of temperature and cross-section dependent pseudo-elastic/pseudo-plastic shape and strain recovery by an initial B2 phase of NiAl nanowire is reported. Such a recoverable strain, which is as high as ~ 30%, can potentially be utilized to realize various types of shape memory and strain sensing phenomena in nano-scale devices. An asymmetry in tensile and compressive yield strength behavior is also observed, which is due to the softening and hardening of the nanowires under tensile and compressive loadings, respectively. Two different deformation mechanisms dominated by twinning under tension and slip under compression are found. Most interestingly, a superplastic behavior with a failure strain of up to 700% in the intermetallic NiAl nanowires is found to exist at a temperature of 0.36Tm. Such superplastic behavior is attributed to the transformation of the nanowire from a crystalline phase to an amorphous phase after yielding of the nanowire.
In the last part the work, another type of nanowires having Cu-Zr system is considered. A novel stress induced martensitic phase transformation from an initial B2 phase to BCT phase in a CuZr nanowire under tensile loading is reported. It is further shown that such a stress induced martenistic phase transformation can be achieved under both tensile as well as compressive loadings. Tensile-compressive asymmetry in the stress-strain behavior is observed due to two different phase transformation mechanisms having maximum transformation strains of ~ 5% under compressive loading and ~ 20% under tensile loading. A size and temperature dependent tensile phase transformation in the nanowire is also observed. Small nanowires show a single step tensile phase transformation whereas the nanowires with larger size show a two step deformation mechanism via an intermediate R-phase hardening followed by R-phase yielding. A study of energetic behavior of these nanowires reveals uniform distribution of stress over the nanowire cross-section and such stress distribution can lead to a significant improvement in its thermo-mechanical properties. Similar improvement is demonstrated by designing the nanowires via manipulating the surface configuration of B2-CuZr system. It is found that the CuZr nanowires with Zr atoms at the surface sites are energetically more stable and also give a uniform distribution of stresses across the cross-section. This leads to the improvement in yield strength as well as failure strain. An approach to design energetically stable nano-structured materials via manipulating the surface configurations with improved thermo-mechanical properties is demonstrated which can help in fundamental understanding and development of similar structures with more stability and enhanced structural properties. Further ab-initio and experimental studies on the confirmation of the stability of the nanowires via manipulating the surface site is an open area of research and related future scopes are highlighted in the closure.
|
40 |
A Study on Digestive Ripening Mediated Size and Structure Control in Nanoparticles Prepared by Solvated Metal Atom Dispersion MethodBhaskar, Srilakshmi P January 2016 (has links) (PDF)
Recent advancements in nanotechnology and emerging applications of nanomaterials in various fields have stimulated interest in fundamental scientific research dealing with the size and structure controlled synthesis of nanoparticles. The unique properties of nanoparticles are largely size dependent which could be tuned further by varying shape, structure, and surface properties, etc. The preparation of monodisperse nanoparticles is desirable for many applications due to better control over properties and higher performance compared to polydispersity nanoparticles. There are several methods for the synthesis of nanoparticles based on top-down and bottom-up approaches. The main disadvantage of top-down approach is the difficulty in achieving size control. Whereas, uniform nanoparticles with controllable size could be obtained by chemical methods but most of them are difficult to scale up. Moreover, a separate step of size separation is necessary in order to achieve monodispersed which may lead to material loss. In this context, a post-synthetic size modification process known as digestive ripening is highly significant. In this process, addition of a capping agent to poly disperse colloid renders it highly monodisperse either under ambient or thermal conditions. In addition to size control, digestive ripening is also effective in controlling the structure of nanoparticles in colloidal solution comprising two different elements. Use of co-digestive ripening strategy in conjunction with solvated metal atom dispersion (SMAD) method of synthesis resulted in hetero structures such as core–shell,
alloy, and composite nanoparticles. Despite the versatility of digestive ripening process, the underlying mechanism in controlling size and structure of nanoparticles are not understood to date. The aim of this thesis is to gain mechanistic insight into size control of digestive ripening as well as to investigate structure control in various binary systems.
Objectives
Study digestive ripening of Au nanoparticles using various alkyl amines to probe the mechanism
Study co-digestive ripening of binary colloids consisting of two metals, Pd and Cu prepared separately by SMAD method
Study co-digestive ripening of binary colloids consisting of a metal (Au) and a semiconductor (CdS) prepared separately by SMAD method
Study vaporization of bulk brass in SMAD reactor and analyse phase, structure, and morphology of various Cu/Zn bimetallic nanoparticles obtained from bulk brass under various experimental conditions
Significant results
In chapter 1, fundamental processes of nanoparticle formation and common synthetic techniques for the preparation of monodisperse nanoparticles are briefly discussed. Chapter 2 presents a mechanistic study of digestive ripening process with regard to size control using Au nanoparticles as a model system. Three long chain alkyl amine molecules having different chain length were used as digestive ripening agents. The course of digestive ripening process was analysed by UV-visible spectroscopy and transmission electron microscopy. The experimental conditions such as concentration of digestive ripening agent, time, and temperature were found to influence the size distribution of nanoparticles. The average particle size was found to be characteristic of metal-digestive ripening agent combination which is considered as the optimum size preferred during digestive ripening under a given set of experimental conditions. This study discusses stabilization of optimum sized particles, surface etching, and reversibility in digestive ripening.
Chapter 3 describes the synthesis and characterization of PdCu alloy nanoparticles by co-digestive ripening method. Syntheses of individual Pd and Cu colloids were carried out by SMAD method. Pd nanoparticles obtained using THF as solvent and in the absence of any capping agent resulted in an extended small Pd nanowire network assembly. Morphological evolution of spherical Pd nanoparticles from Pd nanowire network structure was observed with the use of capping agent, hexadecyl amine (HDA) in SMAD method. Co-digestive ripening of Pd and Cu colloids was studied at various temperatures. This study revealed temperature dependent diffusion of Cu atoms into Pd lattice forming PdCu alloy nanoparticles.
Next, co-digestive ripening of a colloidal system comprising a metal and a semiconductor was explored. Au-CdS combination was chosen for this study owing to its interesting photocatalytic properties. Chapter 4 deals with the synthesis of Au and CdS nanoparticles by SMAD method and Au/CdS nanocomposite by co-digestive ripening. CdS nanoparticles of size 4.0 + 1.2 nm and Au nanoparticles of size 5.6 + 1.1 nm were obtained as a result of digestive ripening process. Au/CdS nanocomposite obtained by co-digestive ripening was characterized by a matrix-like structure made up of CdS nanoparticles in which Au nanoparticles were embedded. CdS nanoparticles were found to establish an intimate surface contact with Au nanoparticles and the matrix of CdS surrounding Au was developed via aggregation during digestive ripening.
Chapter 5 describes a comprehensive study on various Cu/Zn bimetallic nanoparticles obtained from bulk brass. Vaporization of bulk brass in SMAD reactor led to a deploying
process and further growth of nanoparticles from phase separated Cu and Zn atoms formed a composite structure. The characterization of Cu/Zn nanocomposite revealed covering of composite surface with Cu resulting in a core-shell structure, Cu/Zn@Cu. Post-synthetic digestive ripening of these core-shell composite particles showed diffusion of Zn atoms to the composite surface in addition to size and shape modification. Annealing of Cu/Zn nanocomposites prepared in THF resulted in α-CuZn alloy nanoparticles via sequential transformation through η-CuZn5, γ-Cu5Zn8, and β-CuZn (observed as marten site) phases.
|
Page generated in 0.1431 seconds