Spelling suggestions: "subject:"coppernickel allow"" "subject:"copper:silver allow""
1 |
Biofouling and corrosion studies of a copper-nickel alloyGarner, Bradley John January 1987 (has links)
The marine biofouling and corrosion of Kunifer 10 (10% Ni, 1. 5% Fe, copper alloy), was studied using a combination of analytical techniques including x-ray photoelectron spectroscopy (XPS), energy dispersive x-ray analysis (EDXA) and electron microscopy. Particular emphasis was placed on the very early stages of fouling, although the study continued until a climax community of macrofouling organisms had become established. Dissolved organic matter (DOM), was successfully extracted from seawater by ultrafiltration and chloroform-emulsion separation. The collected materials were partially characterised using fourier transform infrared spectroscopy (FTIR) and standard chemical analyses. Extracted materials were found to be mainly carbohydrate in character, with lesser quantities of protein. The FTIR investigations indicated considerable seasonal variation in the extracted DOM. XPS proved to be a suitable technique to investigate the development of marine organic and inorganic films that form on the alloy. Adsorbed organic macromolecules exhibited a characteristic spectral "fingerprint". The effect of elevated DOM on the corrosion behaviour of the Kunifer 10 alloy was investigated, using DC and AC impedance electrochemistry. Studies indicated that a temporary loss of passivation occurred in the presence of DOM under transient oxygen conditions. The development of organic layers on the alloy was shown to influence subsequent stages of biofouling, Kunifer 10 coated with elevated levels' of organic extracts was less likely to become fouled by microorganisms, although certain extracts appeared to stimulate the settlement of marine protozoans. However, such effects were short lived due to the continual formation of bio/corrosion layers. An unusual form of corrosion, not previously documented, is reported and an explanation for the exfoliation of the bio/corrosion films on Kunifer 10 is suggested. A range of cupronickel-iron alloys were assessed for their short-term marine biofouling/corrosion performance. Of the alloys tested Kunifer 10 showed optimum resistance. The study includes a literature review on marine biofouling and corrosion.
|
2 |
Reverse Water Gas Shift Reaction over Supported Cu-Ni Nanoparticle CatalystsLortie, Maxime January 2014 (has links)
CuNi nanoparticles were synthesized using a new polyol synthesis method. Three
different CuxNi1-x catalysts were synthesized where x = 20, 50 and 80. The nanoparticles were deposited on carbon, C, gamma-alumina, γ-Al2O3, yttria-stabilized zirconia, YSZ, and samariumdoped ceria, SDC. Each set of catalysts was tested using the Reverse Water Gas Shift, RWGS, reaction under atmospheric pressure and at temperatures ranging from 400°C-700°C. The experiments were repeated 3 times to ensure stability and reproducibility. Platinum nanoparticles
were also deposited on the same supports and tested for the RWGS reaction at the same conditions. The CuNi nanoparticles were characterized using a variety of different techniques. Xray diffraction, XRD, measurements demonstrate the resence of two CuNi solid solutions: one Cu rich solid solution, and the other a Ni rich solid solution. X-ray photo electron spectroscopy, XPS, measurements show Cu enrichment on all catalytic surfaces. Scanning electron microscopy, SEM, measurements show CuNi nanoparticles ranging in size from 4 nm to 100 nm.
Some agglomeration was observed. SDC showed the best yield with all catalysts. Furthermore, high oxygen vacancy content was shown to increase yield of CO for the RWGS reaction. Cu50Ni50/SDC shows the combination of highest yield of CO and the best stability among CuNi catalysts. It also has similar yields (39.8%) as Pt/SDC at 700°C, which achieved the equilibrium yield at that temperature (43.9%). The catalyst was stable for 48 hours when exposed to high temperatures (600-700°C). There was no CH4 observed during any of the experiments when the
partial pressure of the reactant gases was fed stoichiometrically. Partial pressure variation experiments demonstrated the presence of CH4 when the partial pressure of hydrogen was increased to twice the value of the partial pressure of CO2.
|
3 |
Electrochemically Deposited Metal Alloy-silicate Nanocomposite Corrosion Resistant MaterialsConrad, Heidi Ann 05 1900 (has links)
Zinc-nickel ?-phase silicate and copper-nickel silicate corrosion resistant coatings have been prepared via electrochemical methods to improve currently available corrosion resistant materials in the oil and gas industry. A layered silicate, montmorillonite, has been incorporated into the coatings for increased corrosion protection. For the zinc nickel silicate coatings, optimal plating conditions were determined to be a working pH range of 9.3 -9.5 with a borate based electrolyte solution, resulting in more uniform deposits and better corrosion protection of the basis metal as compared to acidic conditions. Quality, strongly adhering deposits were obtained quickly with strong, even overall coverage of the metal substrate. The corrosion current of the zinc-nickel-silicate coating is Icorr = 3.33E-6 for a borate based bath as compared to a zinc-nickel bath without silicate incorporation (Icorr = 3.52E-5). Step potential and direct potential methods were examined, showing a morphological advantage to step potential deposition. The effect of borate addition was examined in relation to zinc, nickel and zinc-nickel alloy deposition. Borate was found to affect the onset of hydrogen evolution and was examined for absorption onto the electrode surface. For copper-nickel silicate coatings, optimal conditions were determined to be a citrate based electrolytic bath, with pH = 6. The solutions were stable over time and strong adhering, compact particle deposits were obtained. The corrosion current of the copper-nickel-silicate coatings is Icorr = 3.86E-6 (copper-nickel coatings without silicate, Icorr = 1.78E-4). The large decrease in the corrosion current as the silicate is incorporated into the coating demonstrates the increase in corrosion resistance of the coatings with the incorporation of silicates.
|
4 |
Courant supraconducteur au travers d'un métal ferromagnétique : étude de la jonction piSellier, Hermann 03 December 2002 (has links) (PDF)
Cette thèse étudie quelques aspects de l'effet de proximité entre un supraconducteur (S) et un métal ferromagnétique (F). Dans un métal normal confiné entre deux électrodes supraconductrices, il se forme des états liés qui permettent le passage cohérent de paires d'électrons (de spins opposés). Le supercourant transporté par ces états dépend de la différence de phase $\phi$ entre les deux supraconducteurs. Dans le cas d'une jonction S/F/S, l'énergie d'échange ferromagnétique modifie le spectre des états liés et peut inverser la direction du supercourant (par rapport au cas S/N/S). En l'absence de courant, l'état fondamental a alors une différence de phase $\phi=\pi$ (au lieu de $\phi=0$) et l'on parle de {\it jonction $\pi$}. La transition 0-$\pi$ peut s'observer en fonction de l'épaisseur ferromagnétique, mais également en fonction de la température si l'énergie d'échange n'est pas beaucoup plus grande que le gap supraconducteur. Cette transition se caractérise par une dépendance non-monotone du courant critique avec la température, comportement que nous avons observé dans des jonctions Nb/Cu$_{52}$Ni$_{48}$/Nb. Dans ces jonctions la couche de cuivre-nickel est très faiblement ferromagnétique, voire super-paramagnétique. Le courant critique s'annule en fonction de la température à une valeur $T^*$ (inférieure à $T_c$): en-dessous de $T^*$ la jonction est dans l'état~$\pi$, au-dessus de $T^*$ elle est dans l'état~0. L'annulation est indépendante du champ magnétique qui produit une figure de diffraction toujours centrée en champ nul. L'effet Josephson alternatif étudié de part et d'autre de la transition 0-$\pi$ ne montre pas de différence entre les deux états. L'évolution du courant critique avec l'épaisseur ferromagnétique et la température peut être modélisée à partir des équations d'Usadel. Cette analyse suggère la présence d'un processus de diffusion spin-flip qui réduit fortement l'amplitude du courant critique. Les bicouches S/F présentent également des états liés dont le spectre est fonction de l'énergie d'échange et de l'épaisseur ferromagnétique. La température de transition supraconductrice présente des oscillations en fonction de ces deux paramètres, car elle est sensible à la position de ces états via l'effet de proximité inverse. Nous avons pu mesurer une faible signature de cet effet dans des bicouches Nb/CuNi. Dans les tricouches F$_1$/S/F$_2$, de type vanne de spin, la température de transition doit en théorie dépendre de l'orientation relative des aimantations ferromagnétiques. Cependant nous n'avons mesuré aucune différence dans des multicouches NiO/Co/Nb/Co, puis NiO/CuNi/Nb/CuNi, car l'épaisseur de niobium en-dessous de laquelle la supraconductivité disparaît reste plusieurs fois supérieure à la longueur de cohérence. Cette saturation de l'épaisseur critique est attribuée à un fort processus de diffusion spin-flip dans cet alliage très dilué.
|
Page generated in 0.0388 seconds