1 |
Block LU simulation with an Approximate Model of CoregionalizationWang, Tong Unknown Date
No description available.
|
2 |
Block LU simulation with an Approximate Model of CoregionalizationWang, Tong 11 1900 (has links)
Geostatistical techniques are used to estimate recoverable reserves at unsampled locations and to quantify uncertainty. Several variables are often measured and important for reserve evaluation. Using more variables improves the quality of modeling, but quantifying the relationships between the variables is difficult. The traditional linear model of coregionalization has been used to quantify the relationship between multiple variables, but ensuring the mathematical validity of the model is cumbersome. This research proposes an approximate method that improves the speed and practicality of the numerical modeling process by easily modeling multiple regionalized variables. The proposed algorithm is based on block LU simulation and takes local transformation into consideration. Application to a nickel deposit demonstrates the proposed methodology. / Mining Engineering
|
3 |
Avaliação de modelos geoestatísticos multivariados / Evaluation of Multivariate Geostatistic ModelsRighetto, Ana Julia 17 December 2012 (has links)
Questões centrais em diversas áreas do conhecimento como ciências ambientais, geologia, agronomia, dentre outras, envolvem a compreensão da distribuição espacial de processos a partir de dados espacialmente referenciados. Os interesses de pesquisa podem estar na descrição espacial de duas ou mais variáveis e, desta forma, tem-se dois ou mais atributos para modelar. Modelos multivariados são propostos para o estudo se há evidências e/ou explicações contextuais de que os processos não são independentes. Diferentes modelos propostos na literatura foram avaliados e comparados ao modelo Matérn multivariado, recentemente proposto na literatura. Foram considerados o modelo linear de corregionalização, o modelo bivariado gaussiano de componente comum e um modelo bayesiano de regressão espacial. Estes modelos foram ajustados e utilizados para predição espacial geoestatística (krigagem) em um conjunto de dados com duas variáveis climáticas no qual uma parte dos dados foi separada para avaliação das predições. Além disso, foi realizado um estudo de simulação para avaliar a estimação e predição sob o modelo Matérn multivariado. / Key issues in a diversity of subject areas such as environmental sciences, geology, agronomy, among other, require the understanding of the spatial distribution of natural processes from spatially referenced data. Research interests may include the spatial description of two or more variables and therefore, there are tow or more attributes to be modeled. Multivariate models are adopted when there is evidence and/or contextual explanations the two processes are not independent. Different models presented in the literature are assessed and compared to the recently introduced multivariate Matérn model. The linear model of corregionalization, the bivariate Gaussian common component model and a bayesian spatial reression model were considered. The models were fitted and used for geostatistical spatial prediction (kriging) for a pair of weather related variables with part of the data used only for comparing the predicions. Additionally a simulation study assessed estimation and prediction under the multivariate Matérn model.
|
4 |
Avaliação de modelos geoestatísticos multivariados / Evaluation of Multivariate Geostatistic ModelsAna Julia Righetto 17 December 2012 (has links)
Questões centrais em diversas áreas do conhecimento como ciências ambientais, geologia, agronomia, dentre outras, envolvem a compreensão da distribuição espacial de processos a partir de dados espacialmente referenciados. Os interesses de pesquisa podem estar na descrição espacial de duas ou mais variáveis e, desta forma, tem-se dois ou mais atributos para modelar. Modelos multivariados são propostos para o estudo se há evidências e/ou explicações contextuais de que os processos não são independentes. Diferentes modelos propostos na literatura foram avaliados e comparados ao modelo Matérn multivariado, recentemente proposto na literatura. Foram considerados o modelo linear de corregionalização, o modelo bivariado gaussiano de componente comum e um modelo bayesiano de regressão espacial. Estes modelos foram ajustados e utilizados para predição espacial geoestatística (krigagem) em um conjunto de dados com duas variáveis climáticas no qual uma parte dos dados foi separada para avaliação das predições. Além disso, foi realizado um estudo de simulação para avaliar a estimação e predição sob o modelo Matérn multivariado. / Key issues in a diversity of subject areas such as environmental sciences, geology, agronomy, among other, require the understanding of the spatial distribution of natural processes from spatially referenced data. Research interests may include the spatial description of two or more variables and therefore, there are tow or more attributes to be modeled. Multivariate models are adopted when there is evidence and/or contextual explanations the two processes are not independent. Different models presented in the literature are assessed and compared to the recently introduced multivariate Matérn model. The linear model of corregionalization, the bivariate Gaussian common component model and a bayesian spatial reression model were considered. The models were fitted and used for geostatistical spatial prediction (kriging) for a pair of weather related variables with part of the data used only for comparing the predicions. Additionally a simulation study assessed estimation and prediction under the multivariate Matérn model.
|
Page generated in 0.0124 seconds