• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèle Dynamique Temps-Réel pour l'Animation d'Objets Poly-Articulés dans les Environnements Contraints, Prise en Compte des Contacts Frottants et des Déformations Locales : Application en Robotique Humanoïde et aux Avatars Virtuels

Chardonnet, Jean-Rémy 23 June 2009 (has links) (PDF)
Ce travail de thèse présente un simulateur dynamique interactif pour corps poly-articulés utilisant des méthodes par contraintes pour calculer les efforts d'interaction avec frottements. Ce simulateur est une partie intégrante d'un logiciel de prototypage nommé AMELIF. Nous nous intéressons à optimiser le calcul de la dynamique pour obtenir des simulations en temps-réel et qui nous permettent de réaliser des tâches collaboratives interactives. Nous intégrons également des modèles de déformations pour pouvoir simuler, d'une part les flexibilités internes présentes sur les robots actuels, et d'autre part les futurs robots munis d'une peau flexible. Notre simulateur a été validé par différents scénarios de manipulation et de génération de postures.
2

Simulations numériques d’écoulements incompressibles interagissant avec un corps déformable : application à la nage des poissons / Numerical simulation of incompressible flows interacting with forced deformable bodies : Application to fish swimming

Ghaffari Dehkharghani, Seyed Amin 15 December 2014 (has links)
Une méthode numérique précise et efficace est proposée pour la simulation de corps déformables interagissant avec un écoulement incompressible. Les équations de Navier-Stokes, considérées dans leur formulation vorticité fonction de courant, sont discrétisées temporellement et spatialement à l'aide respectivement d'un schéma d'ordre 4 de Runge-Kutta et par des différences finies compactes. Grâce à l'utilisation d'un maillage uniforme, nous proposons un nouveau solveur direct au quatrième ordre pour l'équation de Poisson, permettant de garantir l'incompressibilité au zéro machine sur une grille optimale. L'introduction d'un corps déformable dans l'écoulement de fluide est réalisée au moyen d'une méthode de pénalisation de volume. La déformation du corps est imposée par l'utilisation d'un maillage lagrangien structuré mobile qui interagit avec le fluide environnant en raison des forces hydrodynamiques et du moment (calculés sur le maillage eulérien de référence). Une loi de contrôle efficace de la courbure d'un poisson anguilliforme nageant vers une cible prescrite est proposée. La méthode numérique développée prouve son efficacité et précision tant dans le cas de la nage du poisson mais aussi plus d'un grand nombre de problèmes d'interactions fluide-structure. / We present an efficient algorithm for simulation of deformable bodies interacting with two-dimensional incompressible flows. The temporal and spatial discretizations of the Navier--Stokes equations in vorticity stream-function formulation are based on classical fourth-order Runge--Kutta and compact finite differences, respectively. Using a uniform Cartesian grid we benefit from the advantage of a new fourth-order direct solver for the Poisson equation to ensure the incompressibility constraint down to machine zero over an optimal grid. For introducing a deformable body in fluid flow, the volume penalization method is used. A Lagrangian structured grid with prescribed motion covers the deformable body which is interacting with the surrounding fluid due to the hydrodynamic forces and the torque calculated on the Eulerian reference grid. An efficient law for controlling the curvature of an anguilliform fish, swimming toward a prescribed goal, is proposed which is based on the geometrically exact theory of nonlinear beams and quaternions. Validation of the developed method shows the efficiency and expected accuracy of the algorithm for fish-like swimming and also for a variety of fluid/solid interaction problems.

Page generated in 0.0447 seconds