• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Courbes rationnelles et hypersurfaces de l'espace projectif

Conduché, Denis 30 November 2006 (has links) (PDF)
Une variété algébrique est dite unirationnelle si elle est dominée par un espace projectif ; elle est dite séparablement unirationnelle si on peut prendre le morphisme précédent séparable. Cette dernière propriété n'a d'intérêt qu'en caractéristique positive. En reprenant la démonstration de Paranjape et Srinivas de l'unirationalité des hypersurfaces de degré très petit devant la dimension, nous remarquons qu'elle montre en fait l'unirationalité séparable. Nous nous intéressons aussi à la séparabilité des morphismes fournis par différentes constructions classiques de l'unirationalité des hypersurfaces cubiques.<br /><br />Dans la troisième partie, nous étudions la connexité rationnelle séparable : une variété projective lisse X sur un corps algébriquement clos est dite séparablement rationnellement connexe s'il existe une courbe rationnelle très libre (c'est-à-dire à fibré normal ample) sur X. Nous testons sur les hypersurfaces de Fermat de dimension N-1 et de degré q+1, où q est une puissance de la caractéristique du corps de base, la conjecture que toutes les hypersurfaces lisses de dimension N-1 et de degré plus petit que N sont séparablement rationnellement connexes. Nous montrons que pour N plus grand que 2q-1, l'hypersurface de Fermat de degré q+1 contient une courbe rationnelle très libre définie sur le sous-corps premier ; elle est donc séparablement rationnellement connexe.

Page generated in 0.0841 seconds