1 |
Design of an Inverse Photoemission Spectrometer for the Study of Strongly Correlated MaterialsMcMahon, Christopher January 2012 (has links)
The design and construction of a state-of-the-art ultra-high vacuum spectrometer for the performance of angle-resolved inverse photoemission spectroscopy is presented. Detailed descriptions of its most important components are included, especially the Geiger-Muller ultraviolet photodetectors. By building on recent developments in the literature, we expect our spectrometer to achieve resolution comparable or superior to that of other prominent groups, and in general be one of the foremost apparatus for studying the momentum dependence of the unoccupied states in strongly correlated materials. Summaries of the theory of angle-resolved inverse photoemission spectroscopy and the basics of ultra-high vacuum science are also included.
|
2 |
Design of an Inverse Photoemission Spectrometer for the Study of Strongly Correlated MaterialsMcMahon, Christopher January 2012 (has links)
The design and construction of a state-of-the-art ultra-high vacuum spectrometer for the performance of angle-resolved inverse photoemission spectroscopy is presented. Detailed descriptions of its most important components are included, especially the Geiger-Muller ultraviolet photodetectors. By building on recent developments in the literature, we expect our spectrometer to achieve resolution comparable or superior to that of other prominent groups, and in general be one of the foremost apparatus for studying the momentum dependence of the unoccupied states in strongly correlated materials. Summaries of the theory of angle-resolved inverse photoemission spectroscopy and the basics of ultra-high vacuum science are also included.
|
3 |
Novel metallic behavior in topologically non-trivial, quantum critical, and low-dimensional matter:Heath, Joshuah January 2021 (has links)
Thesis advisor: Kevin S. Bedell / We present several results based upon non-trivial extensions of Landau-Fermi liquid theory. First proposed in the mid-20th century, the Fermi liquid approach assumes an adiabatic “switching-on” of the interaction, which allows one to describe the collective excitations of the many-body system in terms of weakly-interacting quasiparticles and quasiholes. At its core, Landau-Fermi liquid theory is often considered a perturbative approach to study the equilibrium thermodynamics and out-of-equilibrium response of weakly-correlated itinerant fermions, and therefore non-trivial extensions and consequences are usually overlooked in the contemporary literature. Instead, more emphasis is often placed on the breakdown of Fermi liquid theory, either due to strong correlations, quantum critical fluctuations, or dimensional constraints. After a brief introduction to the theory of a Fermi liquid, I will first apply the Landau quasiparticle paradigm to the theory of itinerant Majorana-like fermions. Defined as fermionic particles which are their own anti-particle, traditional Majorana zero modes found in topological materials lack a coherent number operator, and therefore do not support a Fermi liquid-like ground state. To remedy this, we will apply a combinatorical approach to build a statistical theory of self-conjugate particles, explicitly showing that, under this definition, a filled Fermi surface exists at zero temperature. Landau-Fermi liquid theory is then used to describe the interacting phase of these Majorana particles, from which we find unique signatures of zero sound in addition to exotic, non-analytic contributions to the specific heat. The latter is then exploited as a “smoking-gun” signature for Majorana-like excitations in the candidate Kitaev material Ag3LiIr2O6, where experimental measurements show good agreement with a sharply-defined, “Majorana-Fermi surface” predicted in the underlying combinatorial treatment. I will then depart from Fermi liquid theory proper to tackle the necessary conditions for the applicability of Luttinger’s theorem. In a nutshell, Luttinger’s theorem is a powerful theorem which states that the volume of phase space contained in the Fermi surface is invariant with respect to interaction strength. In this way, whereas Fermi liquid only describes fermionic excitations near the Fermi surface, Luttinger’s theorem describes the fermionic degrees of freedom throughout the entire Fermi sphere. We will show that Luttinger’s theorem remains valid only for certain frequency and momentum-dependencies of the self-energy, which correlate to the exis- tence of a generalized Fermi surface. In addition, we will show that the existence of a power-law Green’s function (a unique feature of “un-particle” systems and a proposed characteristic of the pseudo-gap phase of the cuprate superconductors) forces Luttinger’s theorem and Fermi liquid theory to be mutually exclusive for any non-trivial power of the Feynman propagator. Finally, we will return to Landau-Fermi liquid theory, and close with novel out-of-equilibrium behavior and stability in unconventional Fermi liquids. First, we will consider a perfectly two- dimensional Fermi liquid. Due to the reduction in dimension, the traditional mode expansion in terms of Legendre polynomials is modified to an expansion in terms of Chebyshev polynomials. The resulting orthogonality conditions greatly modifies the stability and collective modes in the 2D system. Second, we will look at a Fermi liquid in the presence of a non-trivial gauge field. The existence of a gauge field will effectively shift the Fermi surface in momentum space, resulting in, once again, a modified stability condition for the underlying Fermi liquid. Supplemented with a modernized version of Mermin’s condition for the propagation of zero sound, we outline the full effects a spin symmetric or anti-symmetric gauge would have on a Fermi liquid ground state. / Thesis (PhD) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
|
4 |
Analysis of Functional Models in Density Functional Theory : Applications to Transition Metal Oxides2013 September 1900 (has links)
This work presents a study of the electronic structure of four transition metal oxides (TMOs) using spectroscopic data and a variety of theoretical models. TMOs are a class of materials made from d-block metals in the periodic table, and one or more oxygen atoms. The nature of d-electrons is examined and theoretical models used to treat d-electron systems are tested against experimental data.
Background theory of condensed matter physics is outlined. An overview of density functional theory (DFT) as a theoretical model for calculating the electronic structure of materials is presented. A variety of exchange-correlation (XC) functionals used within the DFT framework are outlined and tested for their applicability to the TMO systems in question. X-ray spectroscopy is briefly outlined and used to test the validity of the different XC functionals.
All four compounds, AgO, Ag2O, CuO, and Cu2O require a Hubbard U term in the XC functional to most accurately reproduce experimental results. The effects of varying the value of U is examined in depth. The oxygen K-edge X-ray emission spectra (XES) exhibits a“two peak” structure for all compounds; the effect of varying the U value is to change the intensity ratio of the two peaks. The ratio of the two peaks as a function of U shows a linear trend in all compounds. A simple line is fit to the peak ratio vs. U curve. A common line between all compounds would provide an important metric with which to predict the appropriate U value needed in similar materials based on simple experimental data. However, the parameters of the fitted line were not common between the four compounds and any metric derived from this method would be system-dependent and not widely applicable to other systems. There are, however, interesting trends in the data when the U value is varied that provide subjects for future research.
A number of fundamental quantities are determined both from experiment and theoretical calculations. Calculated bandgap values are shown to be lower than the experimental values for most functionals tested. This is not unexpected as DFT methods are known to predict much smaller bandgaps than expected. The Heyd-Scuseria-Ernzerhof (HSE) functional used for Ag2O and Cu2O does predict the bandgaps very accurately. The core-hole effect is estimated and proven to be negligible in these systems. Charge transfer and on-site Coulomb repulsion energies, important quantities in the electronic behaviour of TMOs, are determined and compared to previously reported values.
|
5 |
Modélisation des propriétés magnétiques et multiferroïques d'oxydes de cuivre / Modelling magnetic and multiferroic properties of copper oxidesLafargue-dit-Hauret, William 28 September 2018 (has links)
Les matériaux multiferroïques, dans lesquels magnétisme et ferroélectricité coexistent, sont un intérêt majeur dans le domaine du stockage de l'information. Un couplage magnétoélectrique robuste, ainsi qu'une polarisation électrique importante, sont les conditions requises à température ambiante pour ces matériaux multifonctionnels. Ce manuscrit rend compte de travaux théoriques visant à principalement caractériser les propriétés magnétiques d'oxydes à majorité cuivrés, susceptibles de répondre à ces exigences. Une première partie vise à une présentation succincte des cuprates, et de concepts fondamentaux concernant le magnétisme et la multiferroïcité. La seconde partie expose les méthodes de modélisation employées. Le chapitre trois donne à un aperçu de techniques expérimentales, tels que le magnétomètre à SQUID ou la RPE. Ensuite, les composés AFeO₃ (A = Sc, In et Bi) et un complexe à base de chrome servent de terrain de jeu, à la mise en place de l'approche calculatoire. La complémentarité entre les méthodes ab initio et les techniques de type Monte-Carlo ou Diagonalisation Exacte, permet une description complète du diagramme de phases magnétiques, alimentée d'une discussion permanente avec l'expérience. Une stratégie similaire est utilisée dans le chapitre suivant, avec l'étude du composé SeCuO₃ et de ses fluctuations quantiques. La dernière partie consiste en la caractérisation de l'effet d'une pression physique (hydrostatique ou uniaxiale) ou chimique sur les propriétés magnétiques des composés CuO, Cu₂OX₂ et CuX₂ (X=F, Cl, Br et I). / Multiferroic materials, in which magnetism and ferroelectricity coexist, have a great interest for memory devices. A robust magnetoelectric coupling, and a high electric polarization, are required at ambient temperature for these multifunctional materials. This thesis reports theoretical works mainly devoted to characterize magnetic properties of cuprates and other oxide compounds, which could develop such skills. A first part aims at briefly discussing cuprates and fundamental concepts of magnetism and multiferroicity. The second chapter is devoted to the theoretical methods used during these works. The third chapter corresponds to a brief overview of experimental techniques, like SQUID magnetometry or EPR. In the fourth chapter, AFeO₃ (A = Sc, In and Bi) multiferroic hexaferrites and a complex based on chromium centers are considered as a "testing ground" to the establishment of the computational approach. Thanks to the complementarity between ab initio methods, using Density Functional Theory, and simulation techniques as Monte-Carlo or Exact Diagonalization procedures, the entire magnetic phase diagram can be fully described. In chapter 5, a similar strategy is considered for studying the SeCuO₃ compound, which exhibits two decoupled magnetic sub-networks and quantum fluctuations. The last chapter of this thesis focuses on the tuning of the magnetic phases diagrams of CuO, Cu₂OX₂ and CuX₂ compounds (X = F, Cl, Br, I) applying physical (hydrostatic and uniaxial) and chemical pressures.
|
6 |
Time-Domain Terahertz Studies of Strongly Correlated GeV4S8 and Osmate Double-PerovskitesWarren, Matthew Timothy January 2017 (has links)
No description available.
|
7 |
Ultrafast electron dynamics in Mott materials / Dynamique ultrarapide dans les matériaux de MottLantz, Gabriel 09 February 2015 (has links)
Les isolants de Mott sont un exemple parfait de l’impact des corrélations électroniques locales sur les propriétés macroscopiques des matériaux. En variant légèrement le dopage ou la pression, un métal peut se transformer en un isolant. Ces propriétés peuvent être modifiées de manière très rapide en plaçant ces matériaux loin de l'équilibre. Nous avons étudié un prototype de Mott-Hubbard, V2O3 dopé en Cr, en utilisant l'état de l’art des techniques pompe-sonde, à savoir la photoémission résolue en angle, la réflectivité optique, la spectroscopie THz, et la diffraction des rayons X. La réponse électronique du système, après une excitation laser femtoseconde, qui a été maintenue pour chaque expérience à une longueur d'onde de 800 nm, a pu être déconvoluée de la réponse du réseau. Une étude comparative de ces réponses transitoires démontre un fort couplage électron-phonon dans ce prototype de matériau fortement corrélé. Avant thermalisation, le poids spectral est transféré de la bande de Hubbard inférieure vers le gap de Mott. Sur une échelle de temps plus long un état métastable est stabilisé par un changement structural. Pour mieux comprendre la réponse transitoire des isolants de Mott, nous avons également étudié un autre composé de Mott, BaCo1-xNixS2. Les tendances générales des isolants de Mott après photoexcitation ont été analysées en utilisant un modèle à deux orbitales. Nous interprétons que le remplissage du gap comme un changement spécifique des occupations orbitales. / Mott insulators are a perfect example of how local electronic correlations can change macroscopic properties of materials. Varying slightly the doping or the pressure can transform a metal to an insulator. These properties can be modified extremely rapidly by driving these materials far from equilibrium. We have investigated the model Mott-Hubbard material Cr-doped V2O3 using state of the art pump-probe techniques, namely angle resolved photoelectron spectroscopy, optical reflectivity, THz time-domain spectroscopy, and X-ray diffraction. We were able to unequivocally disentangle the electronic and the lattice response of the system to a femtosecond laser excitation, which was kept in all cases at a wavelength of 800 nm. We present a comparative study of these transient responses, which demonstrates the strong electron-phonon coupling of this strongly correlated model material. We show that before thermalization, spectral weight is transferred from the lower Hubbard band towards the Mott gap. On a longer time scale a metastable state is stabilized by the lattice structure. To further understand the transient response of Mott insulators, we have also studied another Mott compound, BaCo1-xNixS2. The general trends of photoexcitation in Mott insulators are analyzed using a two orbital model. We argue that the filling of the gap can be due to a change of the specific orbital fillings.
|
8 |
Probing Electron Correlations with First-principles Calculations of the High Harmonic Spectrum in SolidsAlam, Didarul 01 January 2023 (has links) (PDF)
High harmonic generation (HHG) is an extreme non-linear phenomenon where strong laser fields interact with a medium to produce coherent and high-frequency harmonics of the incident light. It has emerged as a rapidly growing research area in bulk materials since its first observation in ZnO crystals in 2011. Over the past decade, pioneering studies have already been made in understanding the details of the microscopic mechanism behind this phenomenon, like the role of intra- and inter-band transitions, the contribution of the modulus and the phase of the dipole moment to even and odd harmonic peaks, the role of the oscillating dipoles, effects of broken symmetry, etc. However, the role of electron-electron correlations in the HHG from strongly correlated materials is much less understood. In these materials the interactions between electrons play a significant role, leading to complex and intriguing physical behaviors. In this dissertation, on the example of ZnO, perovskites BaTiO3 and BiFeO3, and transition-metal oxide VO2 I will study the role of electron-electron interaction effects in the HH spectra by using the time-dependent density-functional theory (TDDFT) approach with the exchange-correlation kernel obtained with dynamical mean- field theory (DMFT). In DMFT, one takes into account time-resolved on-site electron-electron interactions (neglected in most of other approaches) that are crucial for a larger part of strongly correlated materials. As I demonstrate, correlation effects significantly modify the HH spectrum, e.g., through the ultrafast modification of the spectrum of the system, as it was found for ZnO. As the next step, I explored the effects of electron-electron correlations in the HH spectrum of BaTiO3 perturbed by intense, few-cycle mid-infrared laser excitations. The correlation effects in this system lead to the emergence of "super-harmonics" - periodic enhancements and suppressions of specific harmonic orders that depend on the correlation strength. I extended my analysis to the case of BiFeO3, where in addition to correlation effects the effects of memory in HHG were analyzed. I have found that both correlation effects and memory lead to an extension of the harmonic cutoff. In my final part, I explored the effect of electron correlations on the HH spectrum of VO2 and compared my findings with the experiment. The obtained results may shed light on the often important role of electron correlations in the HH spectra of solids, providing valuable insights into ultrafast dynamics in complex materials, and contributing to advancements in nonlinear optics and strong-field physics, with the potential for novel photonic devices and imaging techniques in the attosecond and femtosecond regimes.
|
9 |
Effet des corrélations locales sur le couplage électron-phonon dans le LSCO en DFT+DMFTGroulx, Julien 07 1900 (has links)
No description available.
|
10 |
Out-of-equilibrium electron dynamics of Dirac semimetals and strongly correlated materials / Dynamique hors équilibre des électrons dans les sémimétaux de Dirac et les matériaux fortement corrélésNilforoushan, Niloufar 17 December 2018 (has links)
Les matériaux quantiques ont récemment introduit en physique de la matière condensée pour unifier tous les matériaux dans lesquels les fortes corrélations électroniques gouvernent les propriétés physiques du système (e.g. les isolants de Mott) et les matériaux dont les propriétés électroniques sont déterminées par la géométrie de la fonction d’onde (e.g. matériaux de Dirac). Ces matériaux montrent des propriétés émergentes résultantes de l’intrication de différents degrés de libertés : la charge, le spin et le moment orbital, donnant lieu aux propriétés topologiques des électrons. L’étude de ces interactions et des compétitions entre les degrés de liberté pertinents nécessite l’utilisation de techniques pompe-sonde ultra-rapides. Particulièrement, les pulses laser femtosecondes interagissent uniquement avec les électrons pour les placer dans un état hors-équilibre décrit par des distributions de type non Fermi-Dirac. La dynamique subséquente implique de nombreux processus, avec un temps de relaxation relié aux constantes de couplage. De plus, dans les techniques résolues en temps, la lumière peut agir comme un paramètre externe, différent des paramètres thermodynamiques, pour explorer le diagramme de phase. Cela nous donne l’opportunité de stabiliser de nouveaux états inaccessibles par des chemins thermiques quasi-adiabatiques ou de manipuler les propriétés physiques des systèmes.Dans cette thèse, nous avons réalisé différentes expériences dans le but d’étudier les propriétés à l’équilibre et hors équilibre de deux matériaux corrélés: BaCo₁₋ₓNiₓS₂ et (V₁₋ₓMₓ)₂O₃.La première partie de ce projet a été dédiée principalement à l’étude de BaNiS₂, le précurseur métallique de la transition de Mott dans BaCo₁₋ₓNiₓS₂ . En utilisant l’ARPES, nous avons étudié la structure de bandes électroniques de BaNiS₂ dans toute la zone de Brillouin. L’expérience, combinée avec des calculs théoriques, révèle un nouveau type de cône de Dirac bidimensionel à caractère orbitalaire d et induit par les corrélations. Le croisement des bandes est protégé par les symétries particulières de la structure cristalline. Nous avons aussi mesuré la structure de bandes de l’isolant de Mott BaCoS₂ dans ses phases magnétique et non magnétiques.Dans la seconde partie, nous avons étudié la dynamique électronique hors équilibre de BaNiS₂ et (V₁₋ₓMx)₂O₃. Grâce à des mesures tr-ARPES et tr-Réflectivité, nous avons observé une renormalisation non thermique et ultra-rapide du cône de Dirac dans BaNiS₂. Ce phénomène est purement provoqué par les excitations électroniques et est stabilisé par l’intéraction entre les électrons et les phonons. De plus, en utilisant différentes techniques pompe-sonde (tr-XRD basé sur XFEL et tr-Réflectivité) nous avons aussi exploré des phases hors-équilibre du matériau prototype de Mott-Hubbard (V₁₋ₓMx)₂O₃ appartenant à différentes parties de son diagramme de phase. Nos résultats montrent une phase transitoire non thermique se développant immédiatement après la photoexcitation ultra-rapide et durant quelques picosecondes dans les phases métallique et isolantes. Cette phase transitoire est accompagné par une distorsion structural qui correspond à un durcissement du réseau et est marqué par un “blue shift” du mode phononique A₁g. Nos résultats soulignent l’importance du remplissage des orbitales aussi bien que des effets important des forts couplages électron-réseau sélectifs dans les matériaux fortement corrélés. / Quantum materials is a new term in condensed matter physics that unifies all materials in which strong electronic correlation governs physical properties of the system (e.g. Mott insulators) and materials whose electronic properties are determined by the geometry of the electronic wave function (e.g. Dirac materials). These materials show emergent properties– that is, properties that only appear by intricate interactions among many degrees of freedom, such as charge, spin and orbital, giving rise to topological properties of electrons. The study of these interactions and competitions between the relevant degrees of freedom demands applying ultrafast pump-probe techniques. Particularly, femtosecond laser pulses act only on the electrons and set them to an out-of-equilibrium state inexplicable by the Fermi-Dirac distribution. The ensuing dynamics involves various processes and the rate at which the relaxation occurs is related to the coupling constants. Moreover, in time-resolved pump-probe techniques light can act as an additional external parameter to change of the phase diagram – different from thermodynamic parameters. It gives us the opportunity of stabilizing new states inaccessible by quasi-adiabatic thermal pathways or eventually manipulating the physical properties of the systems.In this thesis, we performed different experiments in order to study the equilibrium and out-of-equilibrium properties of two correlated compounds: BaCo₁₋ₓNiₓS₂ and (V₁₋ₓMₓ)₂O₃.The first part of the project was mainly devoted to the study of BaNiS₂ that is the metallic precursor of the Mott transition in BaCo₁₋ₓNiₓS₂. By applying ARPES, we studied the electronic band structure of BaNiS₂ in its entire Brillouin zone. These results combined with some theoretical calculations give evidence of a novel correlation-induced and two-dimensional Dirac cone with d-orbital character. The band crossing is protected by the specific symmetries of the crystal structure. We also investigated the electronic band structure of the Mott insulator BaCoS₂ in its magnetic and nonmagnetic phases.In the second part, we studied the out-of-equilibrium electron dynamics of BaNiS₂ and (V₁₋ₓMx)₂O₃. By means of tr-ARPES and tr-reflectivity measurements, we observed an ultrafast and non-thermal renormalization of the Dirac cone in BaNiS₂ . This phenomenon is purely provoked by the electronic excitation and is stabilized by the interplay between the electrons and phonons. Moreover, by applying various pump-probe techniques (XFEL-based tr-XRD and tr-Reflectivity) we also explored the out-of-equilibrium phases of the prototype Mott-Hubbard material (V₁₋ₓMx)₂O₃ in different parts of its phase diagram. Our results show a transient non-thermal phase developing immediately after ultrafast photoexcitation and lasting few picoseconds in both metallic and insulating phases. This transient phase is followed by a structural distortion that corresponds to a lattice hardening and is marked by a “blue shift” of the A₁g phonon mode. These results underline the importance of the orbital filling as well as the strong effect of the selective electron-lattice coupling in the strongly correlated materials.
|
Page generated in 0.0903 seconds