121 |
Intégrité des tours aéroréfrigérantes en béton armé sous sollicitations extrêmes : Vent et séisme / Integrity of reinforced concrete cooling towers under extreme loads : Wind and EarthquakeLouhi, Amine 30 November 2015 (has links)
Il est prévu d’augmenter la durée de vie des centrales nucléaires actuellement opérationnelles. Le vieillissement des structures en béton armé telles que les tours aéroréfrigérantes doit être évalué, son incidence sur la capacité portante calculée. Dans le cas de fortes dégradations, le renforcement doit être envisagé, afin d’assurer la pérennité de ces tours face aux sollicitations extrêmes telles que les tempêtes de vent et les séismes. Ce travail vise à quantifier les effets néfastes que peut générer la réduction de section des aciers induite par la corrosion, en particulier sur la capacité portante des tours dans des conditions de sollicitations extrêmes monotones ou cycliques de types vent et séisme. Ces sollicitations sont certainement les plus sévères, entrainant la structure dans le domaine non linéaire, elles sont susceptibles d’induire des endommagements de type fissuration qui dans le cas de sollicitation cycliques peuvent s’avérer néfastes. Des modélisations numériques sont proposées pour déterminer la réponse quasi-statique ou dynamique de la structure, en tenant compte des apparitions de fissures dans le béton et de leur évolution via des lois de comportement appropriées du matériau béton, ainsi que la plastification des aciers. Dans le cas d’une sollicitation sismique, dans le but de comparer les approches de modélisation du séisme et d’évaluer la robustesse des résultats, les réponses dynamiques sont évaluées par trois méthodes différentes de calcul : l’approche dynamique temporelle non linéaire, la méthode spectrale et la méthode modale temporelle. Des études paramétriques portant sur l’amortissement, les combinaisons de charges et les configurations structurales, sont aussi menées. Dans le cas d’une sollicitation de type vent, la technique de renforcement à l’aide de matériaux composite, tel que le tissu de fibres de carbone (TFC) est modélisée. Le comportement de la structure endommagée présentant un taux de corrosion avancée, est évalué dans le régime pré- et post-fissuration, comparativement à la structure intègre. La perte de capacité portante est quantifiée, un renforcement permettant de restaurer l'intégrité et donc d’augmenter la durée de vie de la structure est proposé. / The authorities have planned to increase the lifetime of currently operating nuclear power plants. The ageing of reinforced concrete structures such as cooling towers should be evaluated and its impact on the bearing capacity calculated. In the case of significant damage, the strengthening must be considered to ensure the sustainability of these towers facing the risk of storms and earthquakes becoming more and more frequent. This work aims to quantify the adverse effects that can generate concrete cracks and rebar section loss induced by corrosion, especially on the bearing capacity of nuclear power plant cooling towers under monotonic or cyclic extreme load conditions (wind and earthquake). These loads are certainly the most severe, since they take the structure into the nonlinear domain and can induce or amplify cracking damage. Numerical simulations are proposed to determine the quasi-static or dynamic response of the structure, taking into account appearance of concrete cracks and their evolution via an appropriate material concrete law and rebar's yielding. In the case of a seismic load, the responses are evaluated by three different methods; the nonlinear response history analysis (NLRHA), the response spectrum analysis and the modal response history analysis (MRHA) in order to compare the earthquake modeling approaches and to evaluate the robustness of the results. Parametric studies on damping, load combinations and structural configurations, are also performed. In the case of a wind load, the strengthening technique using composite materials, such as carbon fiber reinforced plastic (CFRP) is modeled. The behavior of the damaged structure with an advanced corrosion rate is estimated in the pre- and post-cracking regime, compared to the undamaged structure. The drop of bearing capacity is quantified, a reinforcement designed is proposed to restore the integrity and thus increase the lifetime of the structure.
|
122 |
Performance characterisation of duplex stainless steel in nuclear waste storage environmentOrnek, Cem January 2016 (has links)
The majority of UK’s intermediate level radioactive waste is currently stored in 316L and 304L austenitic stainless steel containers in interim storage facilities for permanent disposal until a geological disposal facility has become available. The structural integrity of stainless steel canisters is required to persevere against environmental degradation for up to 500 years to assure a safe storage and disposal scheme. Hitherto existing severe localised corrosion observances on real waste storage containers after 10 years of exposure to an ambient atmosphere in an in-land warehouse in Culham at Oxfordshire, however, questioned the likelihood occurrence of stress corrosion cracking that may harm the canister’s functionality during long-term storage. The more corrosion resistant duplex stainless steel grade 2205, therefore, has been started to be manufactured as a replacement for the austenitic grades. Over decades, the threshold stress corrosion cracking temperature of austenitic stainless steels has been believed to be 50-60°C, but lab- and field-based research has shown that 304L and 316L may suffer from atmospheric stress corrosion cracking at ambient temperatures. Such an issue has not been reported to occur for the 2205 duplex steel, and its atmospheric stress corrosion cracking behaviour at low temperatures (40-50°C) has been sparsely studied which requires detailed investigations in this respect. Low temperature atmospheric stress corrosion cracking investigations on 2205 duplex stainless steel formed the framework of this PhD thesis with respect to the waste storage context. Long-term surface magnesium chloride deposition exposures at 50°C and 30% relative humidity for up to 15 months exhibited the occurrence of stress corrosion cracks, showing stress corrosion susceptibility of 2205 duplex stainless steel at 50°C.The amount of cold work increased the cracking susceptibility, with bending deformation being the most critical type of deformation mode among tensile and rolling type of cold work. The orientation of the microstructure deformation direction, i.e. whether the deformation occurred in transverse or rolling direction, played vital role in corrosion and cracking behaviour, as such that bending in transverse direction showed almost 3-times larger corrosion and stress corrosion cracking propensity. Welding simulation treatments by ageing processes at 750°C and 475°C exhibited substantial influences on the corrosion properties. It was shown that sensitisation ageing at 750°C can render the material enhanced susceptible to stress corrosion cracking at even low chloride deposition densities of ≤145 µm/cm². However, it could be shown that short-term heat treatments at 475°C can decrease corrosion and stress corrosion cracking susceptibility which may be used to improve the materials performance. Mechanistic understanding of stress corrosion cracking phenomena in light of a comprehensive microstructure characterisation was the main focus of this thesis.
|
123 |
An Analysis of Microstructure and Corrosion Resistance in Underwater Friction Stir Welded 304L Stainless SteelClark, Tad Dee 30 June 2005 (has links) (PDF)
An effective procedure and parameter window was developed for underwater friction stir welding (UWFSW) 304L stainless steel with a PCBN tool. UWFSW produced statistically significant: increases in yield strengths, decreases in percent elongation. The ultimate tensile strength was found to be significantly higher at certain parameters. Although sigma was identified in the UWFSWs, a significant reduction of sigma was found in UWFSWs compared to ambient FSWs. The degree of sensitization in UWFSWs was evaluated using double loop EPR testing and oxalic acid electro-etched metallography. Results were compared to base metal, ambient FSW, and arc welds. Upper and lower sensitization localization bands were identified in the UWFSWs. Although higher sensitization levels were present in UWFSWs compared to the arc weld, ambient FSW, and heat treated base metals, the UWFSWs were found less susceptible to corrosion than arc welds due to the subsurface location of the sensitization bands. A SCC analysis of UWFSWs relative to base metal and arc weldments was performed. U-bends were exposed to two 3.5% NaCl cyclic immersion experiments at 21 °C and 63 °C for 1000 hours each. A tertiary test was conducted in a 25% NaCl boiling solution. The UWFSW u-bends were no more susceptible to SCC than base metal in the cyclic immersion tests. In the boiling NaCl test, the SCC of the UWFSWs showed significant improvement over the SCC of arc welds. Arc u-bends cracked entirely within the weld bead and HAZ, while SCC in the UWFSWs showed no cracking localization.
|
Page generated in 0.1123 seconds