661 |
Utilização de polianilina como revestimento protetor contra corrosão das ligas de alumínio 2014 F, 2024 T3 e 7075 O / Protection corrosion of aluminum alloys AA-2014 F, AA-2024 T3 and 7075 O by polyanilineÁlvaro Fontana 02 August 2007 (has links)
É grande o uso do alumínio em virtude de sua viabilidade técnica e econômica além da alta proteção frente à corrosão conferida pelo filme de óxido de alumínio formado em sua superfície. Neste trabalho foram realizadas deposições de filme de polianilina (PAni) sobre ligas de alumínio AA-2014, AA-2024 e 7075 O. Os experimentos de eletropolimerização foram realizados por voltametria cíclica e cronoamperometria a partir de soluções aquosas contendo ácido fosfórico, ácido sulfâmico e anilina. Para a caracterização dos filmes obtidos sobre as superfícies das ligas foram utilizadas as técnicas de espectroscopia de infravermelho, microscopia eletrônica de varredura e espectroscopia de impedância eletroquímica. Os ensaios de corrosão foram realizados em meio agressivo ao alumínio, solução aquosa de NaCl 0,6 mol L-1 por medidas de polarização potenciodinâmica. Também foi estudada a nucleação dos filmes de PAni por cronoamperometria sobre as mesmas ligas. A partir da caracterização dos polímeros, os resultados demonstram diferenças estruturais entre os filmes de PAni decorrentes do meio ácido utilizado na eletropolimerização, que influencia na proteção contra corrosão. Estruturalmente os filmes eletropolimerizados em meio de ácido fosfórico são mais porosos em relação ao filme de PAni obtido em meio de ácido sulfâmico. Tanto para os filmes obtidos a partir de soluções aquosas de ácido fosfórico como de ácido sulfâmico ocorreram variações estruturais dos filmes após os ensaios de corrosão. Os parâmetros eletroquímicos extraídos das curvas potenciodinâmicas e das análises de impedância demonstram que os filmes obtidos protegem as ligas estudadas contra corrosão. Considerando-se o filme no estado desdopado, para a liga AA-2014, houve um deslocamento no potencial de corrosão de 61,2 mV para valores mais positivos em relação a liga sem recobrimento. Para as outras ligas esse deslocamento foi de 176,1 mV para a liga AA-2024 e 134,3 mV para a liga 7075, evidenciando assim uma maior proteção contra corrosão. Os estudos de corrosão evidenciam que os filmes de PAni podem ser alternativas viáveis aos outros meios protetores utilizados contra corrosão. / Aluminum is widely used due to its technical and economic advantages, as well as due to its high level of corrosion protection provided by the oxide film formed on the surface of the metal. In the current study deposition of polyaniline (PAni) on three different Al alloys (AA-2014 F, AA-2024 T3 and 7075 O) was studied. The electrodepositions were realized from aqueous solutions of either phosphoric acid or sulphamic acid that contained the aniline monomer, using the techniques of cyclic voltammetry and chronoamperometry. The films were characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). To evaluate the resistance of the films under conditions aggressive to Al, potentiodynamic polarization curves were performed in 0,6 mol L-1 NaCl. The nucleation of the films on the aluminum alloys was also investigated using chronoamperometry. Characterization of the PAni films obtained demonstrates that the use of different acids results in distinct structural characteristics, which influence their corrosion protection properties. Structurally the electro-deposited PAni films are more porous when phosphoric acid is used compared to sulphamic acid. After the corrosion assays structural differences are observed, independent of the acid used in the electrosynthesis. Data obtained from the potentioidynamic polarization curves and the impedance measurements indicate that the films obtained protect the alloys studied against corrosion. Considering the film in the undoped form for the alloy AA-2014 F, there was a positive shift in the corrosion potential of 61.2 mV. For the AA-2024 T3 and 7075 O alloys the shifts were 176.1 and 134.4 mV, respectively, indicating a greater degree of corrosion protection. The present study demonstrates that PAni films are viable alternatives to other protection methods.
|
662 |
Avaliação da corrosividade do etanol combustível utilizando arranjo de microeletrodos / Corrosion evaluation in ethanol fuel using microelectrodes arrayAssis, Camila Molena de 03 February 2012 (has links)
Orientador: Rodnei Bertazzoli / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-19T20:26:59Z (GMT). No. of bitstreams: 1
Assis_CamilaMolenade_M.pdf: 5677748 bytes, checksum: 86d7040f9e8479ed7064ba9503bfbe62 (MD5)
Previous issue date: 2012 / Resumo: Neste trabalho foi estudada a corrosão do metal cobre em meio alcoólico utilizando um arranjo de microeletrodos construídos por fotolitografia. Foi avaliada a influência da área do arranjo de microeletrodos na queda ôhmica e no comportamento da resistência do meio eletrolítico. Os resultados obtidos foram plotados, analisados e comparados com metodologias teóricas obtendo uma boa concordância. Conclui-se que a resistência do meio aumenta, a medida que diminui-se o diâmetro do microeletrodo quando considerado um eletrodo unitário, no entanto, a resistência diminui com o diâmetro do microeletrodo quando considerado num arranjo. Em relação à queda ôhmica, esta diminui com a diminuição do diâmetro e através da compensação da queda ôhmica observa-se que as compensações tiveram menor efeito nos microeletrodos de menor área / Abstract: This work presents an investigation on the corrosion of cooper metal, using a microelectrode array building using lithography technique. The influence of microelectrode array area was investigated on the ohmic drop and resistance of ethanol. The results were then compared with existing theoretical methodologies and good agreements were found. It was concluded that resistance of ethanol increases with decreases single microelectrodes diameter and decreases with decreases array microelectrodes diameter. The ohmic drop decreases with diameter decreases and the ohmic drop compensation had the smallest effect on microelectrodes with smaller area / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
|
663 |
Transgranular stress corrosion cracking of 316 L stainless steel in chloride environment at 80º CEltaghoor, Fathi Mohamed Abdsalam January 2016 (has links)
Although the phenomena of stress corrosion cracking is known to occur in 316L stainless steel in chloride environments, there is little knowledge regarding the incubation stage, i.e. when the cracks are very short and about a few grains in length scale. The project aimed to determine whether Grain Boundary Engineering GBE, through thermo-mechanical processing, could improve resistance to transgranular chloride stress corrosion crack nucleation in austenitic stainless steels. The material studied is type 316L austenitic stainless steel, with cracking developing in conditions of controlled humidity at 80°C under saturated MgCl2 salt deposits. Three batches were used; as received (AR), Heat treated at 950ºC designated as TM950ºC, treated at 1075ºC; designated as TM1075ºC and also treated at 1150ºC; designated as TM1150ºC for modifying the structure. The thermo mechanical treatment resulted in increase of ∑(3-29) and ∑3 in both fractions by almost 20% as the annealing temperature increased between 950ºC to TM1150ºC, on the other hand (AR) has sustained on 10% improvement over the TM950ºC in both fractions CSL% = ∑(3-29) and ∑3.In-situ observations show that the short cracks may grow to larger scale length in the (AR), TM950ºCand TM1150ºC than can grow in TM1075ºC.DIC analysis was not suitable for testing in this environment might be due to many factors, such as salt content residual effects, evaporation of the salt liquid, surface detritions and lateral movements due to tensile testing. The interaction between short stress corrosion cracks and microstructure was characterised by Electron backscatter diffraction (EBSD). The high angle grain boundaries (HAGB) are shown to act as barriers to cracking resulting in hindering or deviating the crack tip, which slows the overall crack growth rate. The type of microstructure that would have superior TGSCC resistance would be that, possess much higher fraction of both fractions CSL%= ∑(3-29) and ∑3.
|
664 |
Stress corrosion cracking of low pressure steam turbine blade and rotor materialsVerona, Claire L. January 2012 (has links)
Stress corrosion cracking of a 14 wt% Cr martensitic stainless steel, with commercial names PH-15Cr5Ni, FV520B or X4CrNiCuMo15-5, used for the manufacture of low pressure turbine blades, has been studied with the intention of gaining a better understanding of the processes involved, how they occur and why. Industrially this is very important as stress corrosion cracking is considered to be a delayed failure process, whereby microscopic cracks can potentially propagate through a metal undetected until catastrophic failure occurs. The aim of this work is to establish links between crack length and external factors, such as exposure time, in order to devise a method of dating stress corrosion cracks and therefore predicting their possible occurrence in-service.
|
665 |
Biocompatibility evaluation of nickel-titanium shape memory metal alloyRyhänen, J. (Jorma) 13 April 1999 (has links)
Abstract
The shape memory effect, superelasticity, and good damping properties, uncommon in other implant alloys, make the nickel-titanium shape memory metal alloy (Nitinol or NiTi) a fascinating material for surgical applications. It provides a possibility to make self-locking, self-expanding and self-compressing implants. The purpose of this work was to determine if NiTi is a safe material for surgical implant applications.
The primary cytotoxicity and the corrosion rate of NiTi were assessed in human osteoblast and fibroblast cell cultures. Comparisons were made with 316 LVM stainless steel (StSt) and pure titanium. The metal ions present in the media were analyzed using atomic absorption spectrometry (GFAAS). Despite the higher initial nickel dissolution, NiTi induced no toxic effects, decrease in cell proliferation or inhibition in the growth of cells in contact with the metal surface.
The general soft tissue responses to NiTi were compared to corresponding responses to StSt and Ti-6Al-4V alloy in rats during a follow-up of 26 weeks. The muscular tissue response to NiTi was clearly non-toxic and non-irritating, as were also the neural and perineural responses. The overall inflammatory response and the presence of immune cells, macrophages and foreign body giant cells were similar compared to the other test materials. At 8 weeks, histomorphometry showed that the encapsule membrane of NiTi was thicker than that of stainless steel, but at 26 weeks the membrane thicknesses were equal.
A regional acceleratory phenomenon (RAP) model was used to evaluate new bone formation, bone resorption and bone (re)modeling after periosteal implantation of NiTi, StSt or Ti-6Al-4V in rats using histomorphometry. Maximum new woven bone formation started earlier in the Ti-6Al-4V group than in the NiTi group, but also decreased earlier, and at 8 weeks the NiTi and StSt groups had greater cortical bone width. Later, no statistical differences were seen. NiTi had no negative effect on total new bone formation or normal RAP during a 26-week follow-up.
The ultrastructural features of cell-NiTi adhesion were analyzed with scanning electron microscopy (FESEM). Cell adhesion and focal contacts showed a good acceptance of NiTi.
Femoral osteotomies of rats were fixed with either NiTi or StSt intramedullary nails. Bone healing was examined with radiographs, peripheral quantitative computed tomography (pQCT) and histologically. The maximum follow-up was 60 weeks. There were more healed bone unions in the NiTi than the StSt group at early time points. Callus size and bone mineral density did not differ between the NiTi and StSt groups. Mineral density in both groups was lower in the osteotomy area than in the other areas along the nail. Density in the nail area was lower than in the proximal part of the operated femur or the contralateral femur. Bone contact to NiTi was close, indicating good tissue tolerance. Determination of trace metals from several organs was done by GFAAS or inductively coupled plasma-atomic emission spectrometry (ICP-AES). There were no statistically significant differences in nickel concentration between the NiTi and StSt groups in distant organs. The FESEM assessment showed surface corrosion changes to be more evident in the StSt implants.
On the basis of this study, the biocompatibility of NiTi seems to be similar to or better than that of stainless steel or Ti-6Al-4V alloy. NiTi appears to be suitable for further use as a biomaterial, because its biocompatibility is good. When NiTi is intended to be used in long-term implants, optimal surface treatment must consider.
|
666 |
Contribution à la modélisation du couplage mécanique-chimique de l'évolution de l'interface pastille-gaine sous irradiationMinne, Jean-Baptiste 19 December 2013 (has links)
Dans un souci de démontrer l'intégrité de l'ensemble des crayons composant les assemblages combustibles utilisés dans les centrales nucléaires, EDF R&D développe depuis plusieurs années le code de calcul CYRANO3. Ce dernier a pour but principal de modéliser le comportement du combustible nucléaire en condition normale et incidentelle par une description "1,5D" du crayon. Cette thèse, fruit d'une collaboration entre EDF R&D, le CEA et l'Université de Bourgogne, s'inscrit dans une démarche d'intégration dans CYRANO3 du phénomène de corrosion interne de la gaine qui pourrait influer sur le comportement de concepts de couples pastille-gaine à l'étude chez EDF. En effet, lors de la combustion en réacteur nucléaire à eau pressurisée (REP), le gonflement de la pastille associé au fluage en compression de la gaine conduit à la fermeture du jeu pastille-gaine et à l'établissement d'un contact fort. Conjointement à l'évolution de ce contact, une couche de zircone d'environ 10 µm d'épaisseur se développe en face interne de gaine, d'abord localement, puis s'étend de plus en plus. D'après les examens métallographiques, il apparaît que c'est à cause de cette couche de zircone que la pastille et la gaine adhèrent à fort taux de combustion, constituant le phénomène de corrosion interne.\\L'objectif principal de cette thèse est d'identifier les mécanismes prépondérants qui mènent, après formation, à la croissance de cette couche, dans l'optique d'apporter une aide à l'analyse de différents couples pastille-gaine. Pour cela, il s'avère pertinent, dans un premier temps, d'utiliser un modèle thermodynamique couplant la mécanique et la diffusion d'oxygène dans la gaine, afin de simuler les interactions mécano-chimiques pastille-gaine qui accompagnent le développement de la couche de zircone interne. Il apparaît que le rôle des contraintes mécaniques est surtout lié aux propriétés de la gaine et non à l'interaction mécanique entre la pastille et la gaine.\\Un composant informatique est ensuite créé. Il permet de simuler la cinétique de croissance de zircone interne, basée sur une transposition 1D de la modélisation précédente, ainsi que la migration balistique des produits de fission. Associé à l'environnement de calcul thermochimique d'EDF R&D, qui intègre un code de neutronique et un code de thermochimie, il est utilisé en post-traitement de CYRANO3 pour analyser 3 concepts de gainage industriel (gaine standard, gaine pré-oxydée, gaine avec liner) dans leurs conditions de fonctionnement normal en REP vis-à-vis du phénomène de corrosion interne. Les résultats obtenus montrent l'intérêt d'analyser finement les comportements mécaniques et chimiques de l'interface pastille-gaine afin de différencier ces 3 concepts de gaine vis-à-vis de leurs propriétés d'adhérence avec la pastille. Cette étude ouvre ainsi la porte à des investigations expérimentales plus poussées ainsi qu'à l'enrichissement de la modélisation proposée. / Pas de résumé en anglais.
|
667 |
Hydrogen concentration measurements using a gel-filled electrochemical probeAllcock, Bryan W. January 1993 (has links)
A novel gel-filled electrochemical hydrogen probe was developed and used to measure hydrogen concentrations in carbon-manganese steels. The results were compared with those from an electrochemical permeation technique and a volumetric method. The probe was used to determine the distribution of hydrogen in 5mm steel plates cathodically charged on one side to represent the wall of a pipe or pressure vessel used in hydrogen service. The concentration measurements obtained by the three techniques were in good agreement with each other and with those predicted from diffusion equations and this permitted the precise boundary conditions on the charged metal surface to be determined. Surface reaction kinetics were investigated to model the hydrogen distribution and these were solved using solutions to Fick's diffusion equations. After long charging times the hydrogen concentration on the efflux surface of the plate approached that on the influx side, indicating that an almost uniform hydrogen distribution had been established. Rather than rapid loss of hydrogen from the free surface, as had been assumed previously, it was clear that there was a large resistance to hydrogen transport across the metal/air interface. Microstructural damage was examined both optically and using the scanning electron microscope. Separate investigations were carried out to help understand the effect that reversible and irreversible trapping had on the diffusion of hydrogen through the steel.
|
668 |
Effect of microstructure on corrosion resistance and anodising behaviour of AA 2099-T8 aluminium alloyMa, Yanlong January 2011 (has links)
The effect of microstructure on corrosion resistance and anodising behaviour of a 3rd generation lithium-containing aluminium alloy, AA 2099-T8, has been studied. Microstructural characterisation of the alloy has shown elongated grains with high angle grain boundaries and approximately equiaxed subgrains with low angle grain boundaries. Two types of constituent particles of high and reduced contents of copper were found, which are present individually or in the form of multiphase particles. The alloy also contains rod-like Al-Cu-Mn-Li and spherical (Al3Zr) dispersoids, and fine age hardening precipitates of T1 (Al2CuLi), (Al3Li) and (Al2Cu).Immersion testing in a chloride-containing solution revealed two types of localised corrosion sites: one was initiated from intermetallics and quickly became passivated; the other lasted for the course of testing, with extensive boundary attack. The latter has been correlated to grains and subgrains with relatively high stored energy.Alkaline etching removed intermetallics from alloy surface; generated a copper-enriched layer in the alloy matrix immediately beneath the residual alumina film; and gradually developed a surface nanotexture. The surface nanotexture has been correlated to the formation of copper-rich nanoparticles within the copper-enriched layer.Anodising the alloy in tartaric-sulphuric acid disclosed that copper in the alloy matrix could be occluded in the anodic film material as copper-rich nanoparticles or be oxidized and incorporated into the film material as copper ions, depending on the anodising voltage. In the latter case, the process was accompanied by oxygen gas generation within the film material, forming anodic films with lateral porosity. Intermetallics of different compositions behaved differently during anodising, leading to modification of the morphology and composition of anodic films. Concerning the effect of alkaline etching on anodising behaviour of the alloy, the removal of intermetallics increased anodising efficiency; the pre-developed copper-enriched layer advanced the establishment of the steady-state film/alloy interface. Variation of copper-enriched layer structure is revealed by the detection of copper-rich nanoparticles in the copper-enriched layer. The copper-rich nanoparticles have structures consistent with either θ", θ' or θ phases. Machining damage can be detected not only by chromic acid anodising (CAA) but also by tartaric-sulphuric acid anodising (TSAA). Neither CAA nor TSAA can be used for detecting shallow corrosion pits.
|
669 |
Étude du mécanisme de corrosion atmosphérique à long terme des aciers : nouvelles stratégies de protection des aciers du patrimoine culturel / Studying the mechanisms of long-term atmospheric corrosion of low alloy steel : new strategies for protection of cultural heritage artefactsFaiz, Hadri 07 March 2012 (has links)
La thèse porte sur l'étude de la compréhension des mécanismes de corrosion atmosphérique à long terme des alliages ferreux. Les applications sont doubles : d'une part, l'entreposage multi-barrières des déchets nucléaires en surface pendant plusieurs centaines d'années, et d'autre part, la préservation et conservation des objets du patrimoine. Dans un premier axe d'étude, une caractérisation fine du système de produits de corrosion est nécessaire afin de déterminer les phases en présence, leur localisation et leur rôle dans les mécanismes. Cela a nécessité de travailler sur des objets issus des sites archéologiques de référence afin de prélever des échantillons d'études. Dans un second axe d'étude, la réactivité de ces phases et leur comportement électrochimique dans les conditions de corrosion doit être déterminée précisément. Il est alors nécessaire de combiner des études sur phases de référence et sur les objets archéologiques eux-mêmes. La localisation des sites de réduction de l'oxygène dans les objets archéologiques doit être déterminée, après les avoir remis quelques mois en corrosion dans des milieux contenant des traceurs judicieux (l'oxygène 18O2), à l'aide des méthodes nucléaires adhoc. En dernier axe, l'identification de ces processus moteur devrait permettre de proposer de nouvelles méthodes d'inhibition de la corrosion à long terme. Cela concerne uniquement le patrimoine / The present report relates to the understanding of long term atmospheric corrosion mechanisms of low alloy steels which are necessary for various applications such as the interim storage of nuclear waste, and the conservation of cultural heritage artefacts. At a first stage, it may be necessary to characterize ancient corrosion system in order to identify the reactive phases in the rust layers, their localisation and their role in the mechanism. In that purpose, the work on objects reference archaeological sites (analogues) can help to take sample of studies. At a second stage, the electrochemical behaviour and their reactive of the phases constitutive of the corrosion layer must be determined precisely. In that field, it is necessary to combine the study of the pure phases and the powders taken on the analogues. The localisation of oxygen reduction sites in the rust layer is a very pertinent tool. To that end, specific experiments have been set up to re-corrode the ancient samples in marked medium (using 18O2), were investigated by nuclear reaction analysis. Finally, the identification of these newly-formed phases give precious information to develop new methods of inhibition of long term corrosion. It concerns only the heritage
|
670 |
In Vitro Simulation of Modular Neck Fracture, Wear, Corrosion, and Distraction in Total Hip ReplacementsAljenaei, Fahad January 2015 (has links)
Total hip replacements are being used to relieve pain and restore the hip function of unhealthy hip joints. The various sizes and geometries of the modular femoral neck implants allow the surgeon to optimize the range of motion and patient’s leg length. However, some in vivo modular femoral neck retrievals have shown early fatigue and advanced wear-corrosion at the neck-stem taper interface, which can lead to adverse tissue reactions and failure of the implant.
The overall objective of this study was to simulate in vivo fatigue fracture, wear, and corrosion of modular necks at the neck-stem taper interface in a laboratory setting (in vitro) to better predict the failure mechanisms and implant limitations. More specifically, after optimizing the laboratory setup and the testing conditions, this study aimed to compare the effects of the modular neck material (Ti6Al4V and CoCrMo) and the implant assembly technique (hand and impact assembly) on fatigue life, wear-corrosion resistance, and distraction force. The PROFEMUR® Modular Neck System with CoCrMo femoral heads and Ti6Al4V stems was used in this study. The in vitro simulation was divided into two types of tests: fatigue tests (high compression load for a short cyclic loading duration) and corrosion tests (low compression load for a long cyclic loading duration). The neck-stem interface was submersed in a phosphate buffered saline solution, which was maintained at a temperature of 80 ºC to accelerate the corrosion reaction.
The simulation results showed that the Ti6Al4V necks were more vulnerable to fatigue fracture than CoCrMo necks. In addition, impact assembly of the components resulted in an increased implant fatigue life compared to hand assembly, but also increased the distraction force. The observed wear-corrosion damage was higher in fatigue tests than corrosion tests, suggesting that the level of mechanical load was a major factor influencing implant surface damage and fatigue fracture. On the other hand, corrosion tests showed that longer exposure resulted in more fluid accumulation in the stem pocket. This may lead to the formation of a corrosion cell with strongly acidic conditions in the stem pocket, as well as the potential for larger metal ion release. Overall, the in vitro simulation was successful in reproducing femoral modular neck fracture and wear-corrosion damage similar to retrieved in vivo specimens. Results may play a major role in the future development of total hip replacements and international standards for implant testing.
|
Page generated in 0.1038 seconds