• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de l'expression du gène EphA7 et de son ligand ephrine-A5 dans le cortex en développement/ Transcriptional regulation of EphA7 and ephrin-A5 gene in the developing forebrain

Pietri, Sandra 26 October 2010 (has links)
Le cortex cérébral constitue l’une des structures les plus évoluées et complexes de notre cerveau. Sa surface est divisée en de nombreuses aires fonctionnelles. La mise en place des aires corticales dépend à la fois de facteurs intrinsèques comme la sécrétion de morphogènes ou l’expression en gradient de différents facteurs de transcription, mais elle dépend aussi de facteurs extrinsèques au cortex, en particulier l'innervation par le thalamus. Les ephrines et leurs récepteurs Eph constituent une famille multigénique de facteurs de signalisation impliqués dans divers événements clé du développement cortical où ils sont exprimés selon des profils spatio-temporels complexes. Aux stades tardifs du développement, EphA7 et l’ephrine-A5 sont exprimés en gradients complémentaires au sein de chaque territoire des aires présomptives, constituant ainsi les marqueurs les plus précoces de ces aires corticales. Par la combinaison d’approches in-vitro utilisant la technique d’électroporation focale de tranches corticales embryonnaires, puis in-vivo en utilisant la technique de transgénèse d’addition, nous avons identifié une séquence régulatrice de EphA7 appelée pA7, capable de mimer l’expression endogène de EphA7 au sein du télencéphale dorsal en développement. La lignée de souris pA7-GFP ainsi générée exprime la GFP spécifiquement au sein du télencéphale dorsal durant les stades précoces. Aux stades périnataux cette expression se régionalise au sein de la plaque corticale de chacune des aires présomptives selon des gradients récapitulant ceux observés pour EphA7. Nous avons ensuite purifié des neurones exprimant différents niveaux d’EphA7 par la technique de FACS «Fluorescence-Activated Cell Sorting » et l’analyse de leur transcriptome nous a permis de trouver un grand nombre de gènes différentiellement exprimés. Tous ceux testés par la technique d’hybridation in situ sont exprimés selon un gradient latéral fort et médial faible dans le cortex pariétal, similaire à celui d’EphA7. L’examination de leur profil au sein de cortex de souris dépourvus d’afférences thalamiques, nous a permis de conclure que l’expression de ces gènes incluant EphA7 s’établit indépendamment de celles-ci. Ainsi, notre étude a permis d'identifier un répertoire de gènes neuronaux, pouvant agir en amont ou en combinaison avec EphA7 pour contrôler les facteurs intrinsèques essentiels à l’établissement des aires corticales./ The cerebral cortex is subdivided into distinct cortical areas characterized by specific patterns of gene expression and neuronal connectivity. The patterning of cortical areas is thought to be controlled by a combination of intrinsic factors that are expressed in the cortex, and external signals such as inputs from the thalamus. EphA7 is a member of the ephrin/Eph family of guidance factors that is involved in key aspects of the development of the cortex, and is expressed in several gradients within developing cortical areas. By combining in vitro transcriptional assays and mouse transgenics, we identified a regulatory element of the EphA7 promoter, named pA7, that can recapitulate salient features of the pattern of expression of EphA7 in the developing forebrain, including gradients in the cortex. Using a mouse reporter line where GFP expression recapitulates EphA7 expression, we developed a GFP-based cell sorting procedure to isolate cortical neuron populations displaying different levels of EphA7 expression. Transcriptome analysis of these populations enabled to identify a specific array of differentially expressed genes. All genes validated further in vivo were confirmed to be expressed along distinct gradients in the developing cortical plate, similarly to EphA7. The expression of these genes was unchanged in mutant mice defective for thalamocortical projections, indicating that their graded pattern is largely intrinsic to the cortex. Our study identifies a novel repertoire of cortical neuron genes that may act upstream of, or together with EphA7, to control the intrinsic patterning of cortical areas.
2

Intraskeletal Variability of Relative Cortical Area

Stewart, Marissa Catherine 20 July 2011 (has links)
No description available.
3

Exploration of the inter-areal cortico-cortical network of the macaque monkey

Markov, Nikola 03 June 2010 (has links) (PDF)
The cortex can be viewed as a network of functional areas. A cortical area, composed ofneurons forming local connections, interacts with other areas via long distance connections.Each neuron receives multiple inputs and has to integrate the incoming signals. This integrativecapacity is the basis of the computational power of the brain. Our work concentrates onunderstanding the principles that govern the structure of the cortical network i.e. the allocationof neural resources as well as the anatomical segregation between processing steams. Usingretrograde tracer injections we extract two quantitative parameters: (i) the proportion ofSupragranular Labelled Neurons (SLN) identifies the feedforward (FF) or feedback (FB)operation between the source and target area; (ii) the Fraction of Labelled Neurons (FLN)identifies the magnitude of a connection pathway.We have made repeat injections in V1, V2, V4 to investigate the consistency of corticalpathways. This showed that (i) connection weights are consistent between animals; (ii) the listof areas projecting to each injection site is highly reproducible. We find that there are fixedFLN values for each pair of interconnected areas. The FLN values of all the afferent pathwaysto a given target span over a factor of 6 levels of log and although there is some overdispersiontheir variability is not larger than one single level of log meaning that there is a specificconnectivity profile for each area. Futermore the FLN follow a lognormal distribution. Inlognormals the mode is lower than the median and the mean i.e. the majority of pathways haveFLN weaker than the average FLN, meaning that strong projections are rare. If instead thedistribution of FLN was to follow a power law, then high FLN values would have been evenrarer. We found, a regularity in that the strongest input is invariably from within the injectedarea, second strongest are the inputs from areas sharing common borders with the target area.Sub-cortical inputs have a weak FLN, even when they are associated with an importantfunctional role such as the LGN → V1 pathway. We found that projection distance is inverselyrelated to the FLN value and an exponential distance rule operates that constrains short distanceprojections to high FLN and long distance projections to low FLN.We injected a total of 26 cortical areas homogenously distributed across the cortex. Thisrevealed 1232 projection pathways. Roughly 30% of pathways that we reveal have notpreviously been reported in the literature. Our ability to find new connections is due to theimproved tracing and brain segmentation techniques. We scan the whole brain at up to 80μmintervals to detect projection neurons, and this, as discussed in the text, is a major advantage toexisting studies. The weak long distance connections were shown to contract the characteristicpath-length of the graph (number of hops needed to go between any two areas).Our analysis of the graph showed that contrary to current belief the cortical inter-areal networkis dense (i.e. 58% of the connection that could exist do exist). At such a density, models basedon binary features such as small world cannot capture the specificity of the graph. Hence thecortex does not correspond small-world network, with sparse clustered graph possessingempowered by few critical projecitons that ensure short characteristic path-lengths. Furtheranalysis of pathway efficiency showed that the short distance connections of high magnitudeprovide large bandwidth for local connectivity and form a backbone of clustered functionallyrelated areas. This backbone is embedded in a sea of weak connections providing direct linksbetween cortical areas. We refer to this architecture as a tribal-network. We speculate that thesmall scale and high density that characterize the cortico-cortical network is facilitating theemergence of synchrony between cortical areas.
4

Exploration of the inter-areal cortico-cortical network of the macaque monkey / Exploration du réseau cortico-corticales inter-zonale du macaque

Markov, Nikola 03 June 2010 (has links)
Pas de résumé en français / The cortex can be viewed as a network of functional areas. A cortical area, composed ofneurons forming local connections, interacts with other areas via long distance connections.Each neuron receives multiple inputs and has to integrate the incoming signals. This integrativecapacity is the basis of the computational power of the brain. Our work concentrates onunderstanding the principles that govern the structure of the cortical network i.e. the allocationof neural resources as well as the anatomical segregation between processing steams. Usingretrograde tracer injections we extract two quantitative parameters: (i) the proportion ofSupragranular Labelled Neurons (SLN) identifies the feedforward (FF) or feedback (FB)operation between the source and target area; (ii) the Fraction of Labelled Neurons (FLN)identifies the magnitude of a connection pathway.We have made repeat injections in V1, V2, V4 to investigate the consistency of corticalpathways. This showed that (i) connection weights are consistent between animals; (ii) the listof areas projecting to each injection site is highly reproducible. We find that there are fixedFLN values for each pair of interconnected areas. The FLN values of all the afferent pathwaysto a given target span over a factor of 6 levels of log and although there is some overdispersiontheir variability is not larger than one single level of log meaning that there is a specificconnectivity profile for each area. Futermore the FLN follow a lognormal distribution. Inlognormals the mode is lower than the median and the mean i.e. the majority of pathways haveFLN weaker than the average FLN, meaning that strong projections are rare. If instead thedistribution of FLN was to follow a power law, then high FLN values would have been evenrarer. We found, a regularity in that the strongest input is invariably from within the injectedarea, second strongest are the inputs from areas sharing common borders with the target area.Sub-cortical inputs have a weak FLN, even when they are associated with an importantfunctional role such as the LGN → V1 pathway. We found that projection distance is inverselyrelated to the FLN value and an exponential distance rule operates that constrains short distanceprojections to high FLN and long distance projections to low FLN.We injected a total of 26 cortical areas homogenously distributed across the cortex. Thisrevealed 1232 projection pathways. Roughly 30% of pathways that we reveal have notpreviously been reported in the literature. Our ability to find new connections is due to theimproved tracing and brain segmentation techniques. We scan the whole brain at up to 80μmintervals to detect projection neurons, and this, as discussed in the text, is a major advantage toexisting studies. The weak long distance connections were shown to contract the characteristicpath-length of the graph (number of hops needed to go between any two areas).Our analysis of the graph showed that contrary to current belief the cortical inter-areal networkis dense (i.e. 58% of the connection that could exist do exist). At such a density, models basedon binary features such as small world cannot capture the specificity of the graph. Hence thecortex does not correspond small–world network, with sparse clustered graph possessingempowered by few critical projecitons that ensure short characteristic path-lengths. Furtheranalysis of pathway efficiency showed that the short distance connections of high magnitudeprovide large bandwidth for local connectivity and form a backbone of clustered functionallyrelated areas. This backbone is embedded in a sea of weak connections providing direct linksbetween cortical areas. We refer to this architecture as a tribal–network. We speculate that thesmall scale and high density that characterize the cortico-cortical network is facilitating theemergence of synchrony between cortical areas.
5

Etude de l'expression du gène EphA7 et de son ligand ephrine-A5 dans le cortex en développement / Transcriptional regulation of EphA7 and ephrin-A5 gene in the developing forebrain

Pietri, Sandra 26 October 2010 (has links)
Le cortex cérébral constitue l’une des structures les plus évoluées et complexes de notre cerveau. Sa surface est divisée en de nombreuses aires fonctionnelles. La mise en place des aires corticales dépend à la fois de facteurs intrinsèques comme la sécrétion de morphogènes ou l’expression en gradient de différents facteurs de transcription, mais elle dépend aussi de facteurs extrinsèques au cortex, en particulier l'innervation par le thalamus. <p>Les ephrines et leurs récepteurs Eph constituent une famille multigénique de facteurs de signalisation impliqués dans divers événements clé du développement cortical où ils sont exprimés selon des profils spatio-temporels complexes. Aux stades tardifs du développement, EphA7 et l’ephrine-A5 sont exprimés en gradients complémentaires au sein de chaque territoire des aires présomptives, constituant ainsi les marqueurs les plus précoces de ces aires corticales. <p>Par la combinaison d’approches in-vitro utilisant la technique d’électroporation focale de tranches corticales embryonnaires, puis in-vivo en utilisant la technique de transgénèse d’addition, nous avons identifié une séquence régulatrice de EphA7 appelée pA7, capable de mimer l’expression endogène de EphA7 au sein du télencéphale dorsal en développement. La lignée de souris pA7-GFP ainsi générée exprime la GFP spécifiquement au sein du télencéphale dorsal durant les stades précoces. Aux stades périnataux cette expression se régionalise au sein de la plaque corticale de chacune des aires présomptives selon des gradients récapitulant ceux observés pour EphA7. Nous avons ensuite purifié des neurones exprimant différents niveaux d’EphA7 par la technique de FACS «Fluorescence-Activated Cell Sorting » et l’analyse de leur transcriptome nous a permis de trouver un grand nombre de gènes différentiellement exprimés. Tous ceux testés par la technique d’hybridation in situ sont exprimés selon un gradient latéral fort et médial faible dans le cortex pariétal, similaire à celui d’EphA7. L’examination de leur profil au sein de cortex de souris dépourvus d’afférences thalamiques, nous a permis de conclure que l’expression de ces gènes incluant EphA7 s’établit indépendamment de celles-ci. Ainsi, notre étude a permis d'identifier un répertoire de gènes neuronaux, pouvant agir en amont ou en combinaison avec EphA7 pour contrôler les facteurs intrinsèques essentiels à l’établissement des aires corticales./<p>The cerebral cortex is subdivided into distinct cortical areas characterized by specific patterns of gene expression and neuronal connectivity. The patterning of cortical areas is thought to be controlled by a combination of intrinsic factors that are expressed in the cortex, and external signals such as inputs from the thalamus. EphA7 is a member of the ephrin/Eph family of guidance factors that is involved in key aspects of the development of the cortex, and is expressed in several gradients within developing cortical areas. <p>By combining in vitro transcriptional assays and mouse transgenics, we identified a regulatory element of the EphA7 promoter, named pA7, that can recapitulate salient features of the pattern of expression of EphA7 in the developing forebrain, including gradients in the cortex. Using a mouse reporter line where GFP expression recapitulates EphA7 expression, we developed a GFP-based cell sorting procedure to isolate cortical neuron populations displaying different levels of EphA7 expression. Transcriptome analysis of these populations enabled to identify a specific array of differentially expressed genes. All genes validated further in vivo were confirmed to be expressed along distinct gradients in the developing cortical plate, similarly to EphA7. The expression of these genes was unchanged in mutant mice defective for thalamocortical projections, indicating that their graded pattern is largely intrinsic to the cortex. Our study identifies a novel repertoire of cortical neuron genes that may act upstream of, or together with EphA7, to control the intrinsic patterning of cortical areas. <p> <p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
6

A Semi-Automatic Method for Intracortical Porosity Quantification With Application to Intraskeletal Variability

Cole, Mary Elizabeth 01 August 2014 (has links)
No description available.

Page generated in 0.0502 seconds