121 |
Wireless Networking in Future Factories: Protocol Design and Evaluation StrategiesNaumann, Roman 17 January 2020 (has links)
Industrie-4.0 bringt eine wachsende Nachfrage an Netzwerkprotokollen mit sich, die es erlauben, Informationen vom Produktionsprozess einzelner Maschinen zu erfassen und verfügbar zu machen. Drahtlose Übertragung erfüllt hierbei die für industrielle Anwendungen benötigte Flexibilität, kann in herausfordernden Industrieumgebungen aber nicht immer zeitnahe und zuverlässige Übertragung gewährleisten. Die Beiträge dieser Arbeit behandeln schwerpunktmäßig Protokollentwurf und Protokollevaluation für industrielle Anwendungsfälle. Zunächst identifizieren wir Anforderungen für den industriellen Anwendungsfall und leiten daraus konkrete Entwufskriterien ab, die Protokolle erfüllen sollten. Anschließend schlagen wir Protokollmechanismen vor, die jene Entwurfskriterien für unterschiedliche Arten von Protokollen umsetzen, und die in verschiedenem Maße kompatibel zu existierenden Netzwerken und existierender Hardware sind: Wir zeigen, wie anwendungsfallspezifische Priorisierung von Netzwerkdaten dabei hilft, zuverlässige Übertragung auch unter starken Störeinflüssen zu gewährleisten, indem zunächst eine akkurate Vorschau von Prozessinformationen übertragen wird. Für deren Fehler leiten wir präziser Schranken her. Ferner zeigen wir, dass die Fairness zwischen einzelnen Maschinen durch Veränderung von Warteschlangen verbessert werden kann, wobei hier ein Teil der Algorithmen von Knoten innerhalb des Netzwerks durchgeführt wird. Ferner zeigen wir, wie Network-Coding zu unserem Anwendungsfall beitragen kann, indem wir spezialisierte Kodierungs- und Dekodierungsverfahren einführen. Zuletzt stellen wir eine neuartige Softwarearchitektur und Evaluationstechnik vor, die es erlaubt, potentiell proprietäre Protokollimplementierungen innerhalb moderner diskreter Ereignissimulatoren zu verwenden. Wir zeigen, dass unser vorgeschlagener Ansatz ausreichend performant für praktische Anwendungen ist und, darüber hinaus, die Validität von Evaluationsergebnissen gegenüber existierenden Ansätzen verbessert. / As smart factory trends gain momentum, there is a growing need for robust information transmission protocols that make available sensor information gathered by individual machines. Wireless transmission provides the required flexibility for industry adoption but poses challenges for timely and reliable information delivery in challenging industrial environments. This work focuses on to protocol design and evaluation aspects for industrial applications. We first introduce the industrial use case, identify requirements and derive concrete design principles that protocols should implement. We then propose mechanisms that implement these principles for different types of protocols, which retain compatibility with existing networks and hardware to varying degrees: we show that use-case tailored prioritization at the source is a powerful tool to implement robustness against challenged connectivity by conveying an accurate preview of information from the production process. We also derive precise bounds for the quality of that preview. Moving parts of the computational work into the network, we show that reordering queues in accordance with our prioritization scheme improves fairness among machines. We also demonstrate that network coding can benefit our use case by introducing specialized encoding and decoding mechanisms. Last, we propose a novel architecture and evaluation techniques that allows incorporating possibly proprietary networking protocol implementations with modern discrete event network simulators, rendering, among others, the adaption of protocols to specific industrial use cases more cost efficient. We demonstrate that our approach provides sufficient performance and improves the validity of evaluation results over the state of the art.
|
122 |
Studying the effectiveness of dynamic analysis for fingerprinting Android malware behavior / En studie av effektivitet hos dynamisk analys för kartläggning av beteenden hos Android malwareRegard, Viktor January 2019 (has links)
Android is the second most targeted operating system for malware authors and to counter the development of Android malware, more knowledge about their behavior is needed. There are mainly two approaches to analyze Android malware, namely static and dynamic analysis. Recently in 2017, a study and well labeled dataset, named AMD (Android Malware Dataset), consisting of over 24,000 malware samples was released. It is divided into 135 varieties based on similar malicious behavior, retrieved through static analysis of the file classes.dex in the APK of each malware, whereas the labeled features were determined by manual inspection of three samples in each variety. However, static analysis is known to be weak against obfuscation techniques, such as repackaging or dynamic loading, which can be exploited to avoid the analysis. In this study the second approach is utilized and all malware in the dataset are analyzed at run-time in order to monitor their dynamic behavior. However, analyzing malware at run-time has known weaknesses as well, as it can be avoided through, for instance, anti-emulator techniques. Therefore, the study aimed to explore the available sandbox environments for dynamic analysis, study the effectiveness of fingerprinting Android malware using one of the tools and investigate whether static features from AMD and the dynamic analysis correlate. For instance, by an attempt to classify the samples based on similar dynamic features and calculating the Pearson Correlation Coefficient (r) for all combinations of features from AMD and the dynamic analysis. The comparison of tools for dynamic analysis, showed a need of development, as most popular tools has been released for a long time and the common factor is a lack of continuous maintenance. As a result, the choice of sandbox environment for this study ended up as Droidbox, because of aspects like ease of use/install and easily adaptable for large scale analysis. Based on the dynamic features extracted with Droidbox, it could be shown that Android malware are more similar to the varieties which they belong to. The best metric for classifying samples to varieties, out of four investigated metrics, turned out to be Cosine Similarity, which received an accuracy of 83.6% for the entire dataset. The high accuracy indicated a correlation between the dynamic features and static features which the varieties are based on. Furthermore, the Pearson Correlation Coefficient confirmed that the manually extracted features, used to describe the varieties, and the dynamic features are correlated to some extent, which could be partially confirmed by a manual inspection in the end of the study.
|
123 |
Improving Retrieval Accuracy in Main Content Extraction from HTML Web DocumentsMohammadzadeh, Hadi 17 December 2013 (has links) (PDF)
The rapid growth of text based information on the World Wide Web and various applications making use of this data motivates the need for efficient and effective methods to identify and separate the “main content” from the additional content items, such as navigation menus, advertisements, design elements or legal disclaimers.
Firstly, in this thesis, we study, develop, and evaluate R2L, DANA, DANAg, and AdDANAg, a family of novel algorithms for extracting the main content of web documents. The main concept behind R2L, which also provided the initial idea and motivation for the other three algorithms, is to use well particularities of Right-to-Left languages for obtaining the main content of web pages. As the English character set and the Right-to-Left character set are encoded in different intervals of the Unicode character set, we can efficiently distinguish the Right-to-Left characters from the English ones in an HTML file. This enables the R2L approach to recognize areas of the HTML file with a high density of Right-to-Left characters and a low density of characters from the English character set. Having recognized these areas, R2L can successfully separate only the Right-to-Left characters. The first extension of the R2L, DANA, improves effectiveness of the baseline algorithm by employing an HTML parser in a post processing phase of R2L for extracting the main content from areas with a high density of Right-to-Left characters. DANAg is the second extension of the R2L and generalizes the idea of R2L to render it language independent. AdDANAg, the third extension of R2L, integrates a new preprocessing step to normalize the hyperlink tags. The presented approaches are analyzed under the aspects of efficiency and effectiveness. We compare them to several established main content extraction algorithms and show that we extend the state-of-the-art in terms of both, efficiency and effectiveness.
Secondly, automatically extracting the headline of web articles has many applications. We develop and evaluate a content-based and language-independent approach, TitleFinder, for unsupervised extraction of the headline of web articles. The proposed method achieves high performance in terms of effectiveness and efficiency and outperforms approaches operating on structural and visual features. / Das rasante Wachstum von textbasierten Informationen im World Wide Web und die Vielfalt der Anwendungen, die diese Daten nutzen, macht es notwendig, effiziente und effektive Methoden zu entwickeln, die den Hauptinhalt identifizieren und von den zusätzlichen Inhaltsobjekten wie
z.B. Navigations-Menüs, Anzeigen, Design-Elementen oder Haftungsausschlüssen trennen.
Zunächst untersuchen, entwickeln und evaluieren wir in dieser Arbeit R2L, DANA, DANAg und AdDANAg, eine Familie von neuartigen Algorithmen zum Extrahieren des Inhalts von Web-Dokumenten. Das grundlegende Konzept hinter R2L, das auch zur Entwicklung der drei weiteren Algorithmen führte, nutzt die Besonderheiten der Rechts-nach-links-Sprachen aus, um den Hauptinhalt von Webseiten zu extrahieren.
Da der lateinische Zeichensatz und die Rechts-nach-links-Zeichensätze durch verschiedene Abschnitte des Unicode-Zeichensatzes kodiert werden, lassen sich die Rechts-nach-links-Zeichen leicht von den lateinischen Zeichen in einer HTML-Datei unterscheiden. Das erlaubt dem R2L-Ansatz, Bereiche mit einer hohen Dichte von Rechts-nach-links-Zeichen und wenigen lateinischen Zeichen aus einer HTML-Datei zu erkennen. Aus diesen Bereichen kann dann R2L die Rechts-nach-links-Zeichen extrahieren. Die erste Erweiterung, DANA, verbessert die Wirksamkeit des Baseline-Algorithmus durch die Verwendung eines HTML-Parsers in der Nachbearbeitungsphase des R2L-Algorithmus, um den Inhalt aus Bereichen mit einer hohen Dichte von Rechts-nach-links-Zeichen zu extrahieren. DANAg erweitert den Ansatz des R2L-Algorithmus, so dass eine Sprachunabhängigkeit erreicht wird. Die dritte Erweiterung, AdDANAg, integriert eine neue Vorverarbeitungsschritte, um u.a. die Weblinks zu normalisieren. Die vorgestellten Ansätze werden in Bezug auf Effizienz und Effektivität analysiert. Im Vergleich mit mehreren etablierten Hauptinhalt-Extraktions-Algorithmen zeigen wir, dass sie in diesen Punkten überlegen sind.
Darüber hinaus findet die Extraktion der Überschriften aus Web-Artikeln vielfältige Anwendungen. Hierzu entwickeln wir mit TitleFinder einen sich nur auf den Textinhalt beziehenden und sprachabhängigen Ansatz. Das vorgestellte Verfahren ist in Bezug auf Effektivität und Effizienz besser als bekannte Ansätze, die auf strukturellen und visuellen Eigenschaften der HTML-Datei beruhen.
|
124 |
Automatické testování projektu JavaScript Restrictor / Automatic Testing of JavaScript Restrictor ProjectBednář, Martin January 2020 (has links)
The aim of the thesis was to design, implement and evaluate the results of automatic tests for the JavaScript Restrictor project, which is being developed as a web browser extension. The tests are divided into three levels - unit, integration, and system. The Unit Tests verify the behavior of individual features, the Integration Tests verify the correct wrapping of browser API endpoints, and the System Tests check that the extension does not suppress the desired functionality of web pages. The System Tests are implemented for parallel execution in a distributed environment which has succeeded in achieving an almost directly proportional reduction in time with respect to the number of the tested nodes. The benefit of this work is detection of previously unknown errors in the JavaScript Restrictor extension and provision of the necessary information that allowed to fix some of the detected bugs.
|
125 |
Improving Retrieval Accuracy in Main Content Extraction from HTML Web DocumentsMohammadzadeh, Hadi 27 November 2013 (has links)
The rapid growth of text based information on the World Wide Web and various applications making use of this data motivates the need for efficient and effective methods to identify and separate the “main content” from the additional content items, such as navigation menus, advertisements, design elements or legal disclaimers.
Firstly, in this thesis, we study, develop, and evaluate R2L, DANA, DANAg, and AdDANAg, a family of novel algorithms for extracting the main content of web documents. The main concept behind R2L, which also provided the initial idea and motivation for the other three algorithms, is to use well particularities of Right-to-Left languages for obtaining the main content of web pages. As the English character set and the Right-to-Left character set are encoded in different intervals of the Unicode character set, we can efficiently distinguish the Right-to-Left characters from the English ones in an HTML file. This enables the R2L approach to recognize areas of the HTML file with a high density of Right-to-Left characters and a low density of characters from the English character set. Having recognized these areas, R2L can successfully separate only the Right-to-Left characters. The first extension of the R2L, DANA, improves effectiveness of the baseline algorithm by employing an HTML parser in a post processing phase of R2L for extracting the main content from areas with a high density of Right-to-Left characters. DANAg is the second extension of the R2L and generalizes the idea of R2L to render it language independent. AdDANAg, the third extension of R2L, integrates a new preprocessing step to normalize the hyperlink tags. The presented approaches are analyzed under the aspects of efficiency and effectiveness. We compare them to several established main content extraction algorithms and show that we extend the state-of-the-art in terms of both, efficiency and effectiveness.
Secondly, automatically extracting the headline of web articles has many applications. We develop and evaluate a content-based and language-independent approach, TitleFinder, for unsupervised extraction of the headline of web articles. The proposed method achieves high performance in terms of effectiveness and efficiency and outperforms approaches operating on structural and visual features. / Das rasante Wachstum von textbasierten Informationen im World Wide Web und die Vielfalt der Anwendungen, die diese Daten nutzen, macht es notwendig, effiziente und effektive Methoden zu entwickeln, die den Hauptinhalt identifizieren und von den zusätzlichen Inhaltsobjekten wie
z.B. Navigations-Menüs, Anzeigen, Design-Elementen oder Haftungsausschlüssen trennen.
Zunächst untersuchen, entwickeln und evaluieren wir in dieser Arbeit R2L, DANA, DANAg und AdDANAg, eine Familie von neuartigen Algorithmen zum Extrahieren des Inhalts von Web-Dokumenten. Das grundlegende Konzept hinter R2L, das auch zur Entwicklung der drei weiteren Algorithmen führte, nutzt die Besonderheiten der Rechts-nach-links-Sprachen aus, um den Hauptinhalt von Webseiten zu extrahieren.
Da der lateinische Zeichensatz und die Rechts-nach-links-Zeichensätze durch verschiedene Abschnitte des Unicode-Zeichensatzes kodiert werden, lassen sich die Rechts-nach-links-Zeichen leicht von den lateinischen Zeichen in einer HTML-Datei unterscheiden. Das erlaubt dem R2L-Ansatz, Bereiche mit einer hohen Dichte von Rechts-nach-links-Zeichen und wenigen lateinischen Zeichen aus einer HTML-Datei zu erkennen. Aus diesen Bereichen kann dann R2L die Rechts-nach-links-Zeichen extrahieren. Die erste Erweiterung, DANA, verbessert die Wirksamkeit des Baseline-Algorithmus durch die Verwendung eines HTML-Parsers in der Nachbearbeitungsphase des R2L-Algorithmus, um den Inhalt aus Bereichen mit einer hohen Dichte von Rechts-nach-links-Zeichen zu extrahieren. DANAg erweitert den Ansatz des R2L-Algorithmus, so dass eine Sprachunabhängigkeit erreicht wird. Die dritte Erweiterung, AdDANAg, integriert eine neue Vorverarbeitungsschritte, um u.a. die Weblinks zu normalisieren. Die vorgestellten Ansätze werden in Bezug auf Effizienz und Effektivität analysiert. Im Vergleich mit mehreren etablierten Hauptinhalt-Extraktions-Algorithmen zeigen wir, dass sie in diesen Punkten überlegen sind.
Darüber hinaus findet die Extraktion der Überschriften aus Web-Artikeln vielfältige Anwendungen. Hierzu entwickeln wir mit TitleFinder einen sich nur auf den Textinhalt beziehenden und sprachabhängigen Ansatz. Das vorgestellte Verfahren ist in Bezug auf Effektivität und Effizienz besser als bekannte Ansätze, die auf strukturellen und visuellen Eigenschaften der HTML-Datei beruhen.
|
126 |
Knihovna pro efektivní záznam videa v 3D aplikaci / Library for Efficient Video Capture in 3D ApplicationPospíšil, Petr January 2012 (has links)
This thesis deals with library for recording video in the background of 3D application. A library is designed to work under the Microsoft Windows and Linux operation systems. It records image and also sound. Image recording is supported in OpenGL, Direct3D9, Direct3D10 and Direct3D11. To reduce video data size, library supports image compression using MJPG codec. Audio is recorded by WaveForm audio, Windows Core Audio or ALSA. Recorded sound is for whole operation system. A library is able to record up to two audio streams to accommodate possible microphone input. It can mix audio data together if needed. Output data are then written into AVI file. It is possible to write own text information as overlay that is rendered as part of application screen output.
|
Page generated in 0.0453 seconds