• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical modelling of fluid flow and particle transport in rough rock fracture during shear

Koyama, Tomofumi January 2005 (has links)
<p>The effects of different shearing processes and sample sizes on the fluid flow anisotropy and its impact on particle transport process in rough rock fractures are significant factors that need to be considered in the performance and safety assessments of underground nuclear waste repositories. The subjects, however, have not been adequately investigated previously in either laboratory experiments or numerical modeling. This thesis addresses these problems using numerical modeling approaches.</p><p>The modeling consists of two parts: 1) fluid flow simulations considering more complex but realistic flow boundary conditions during shear processes that cannot be realized readily in laboratory experiments, using digitalized fracture surfaces scanned in the laboratory, so that anisotropic fluid flow induced by shearing with channeling phenomenon can be directly simulated and quantified; 2) particle tracking simulations to demonstrate the impacts of such channeling effects on characteristic properties of particle transport. The numerical method chosen for the simulations is the Finite Element Method (FEM). Scale effects were considered in the simulations by using fracture surface samples of different sizes.</p><p>The distributions of fracture aperture during shear were obtained by numerically generating relative translational and rotary movements between two digitalized surfaces of a rock fracture replica without considering normal loading. From the evolutions of the aperture distributions during the shearing processes, the evolutions of the transmissivity fields were determined by assuming the validity of the cubic law locally. A geostatistical approach was used to quantify the scale effects of the aperture and transmissivity fields. The fluid flow was simulated using different flow boundary conditions, corresponding to translational and rotary shear processes. Corresponding to translational shear (with a 1 mm shear displacement interval up to a maximum shear displacement of 20 mm), three different flow patterns, i.e., unidirectional (flow parallel with and perpendicular to the shear direction), bi-directional and radial, were taken into account. Corresponding to rotary shear (with a 0.5o shear angle interval up to 90o), only the radial flow pattern was considered. The particle transport was simulated using the Particle Tracking Method, with the particles motion following the fluid velocity fields during shear, as calculated by FEM. For the unidirectional particle transport, the breakthrough curves were analyzed by fitting to an analytical solution of 1-D advection-dispersion equation. The dispersivity, Péclet number and tracer velocity, as well as their evolutions during shear, were determined numerically.</p><p>The results show that the fracture aperture increases anisotropically during translational shear, with a more pronounced increase in the direction perpendicular to the shear displacement, causing significant fluid flow channelling. A more significant increase of flow rate and decrease in travel time of the particles in the direction perpendicular to the shear direction is predicted. The particle travel time and characteristics are, correspondingly, much different when such effects caused by shear are included. This finding may have an important impact on the interpretation of the results of coupled hydro-mechanical and tracer experiments for measurements of hydraulic properties of rock fractures, because hydraulic properties are usually calculated from flow test results along the shear directions, with the effects of the significant anisotropic flow perpendicular to the shear direction ignored. The results also show that safety assessment of a nuclear repository, without considering the effects of stress/deformation of rocks on fluid flow and transport processes, may have significant risk potential. The results obtained from numerical simulations show that fluid flow through a single rough fracture changes with increasing sample size, indicating that representativehydro-mechanical properties of the fractures in the field can only be accurately determined using samples of representative sizes beyond their stationarity thresholds.</p>
2

Numerical modelling of fluid flow and particle transport in rough rock fracture during shear

Koyama, Tomofumi January 2005 (has links)
The effects of different shearing processes and sample sizes on the fluid flow anisotropy and its impact on particle transport process in rough rock fractures are significant factors that need to be considered in the performance and safety assessments of underground nuclear waste repositories. The subjects, however, have not been adequately investigated previously in either laboratory experiments or numerical modeling. This thesis addresses these problems using numerical modeling approaches. The modeling consists of two parts: 1) fluid flow simulations considering more complex but realistic flow boundary conditions during shear processes that cannot be realized readily in laboratory experiments, using digitalized fracture surfaces scanned in the laboratory, so that anisotropic fluid flow induced by shearing with channeling phenomenon can be directly simulated and quantified; 2) particle tracking simulations to demonstrate the impacts of such channeling effects on characteristic properties of particle transport. The numerical method chosen for the simulations is the Finite Element Method (FEM). Scale effects were considered in the simulations by using fracture surface samples of different sizes. The distributions of fracture aperture during shear were obtained by numerically generating relative translational and rotary movements between two digitalized surfaces of a rock fracture replica without considering normal loading. From the evolutions of the aperture distributions during the shearing processes, the evolutions of the transmissivity fields were determined by assuming the validity of the cubic law locally. A geostatistical approach was used to quantify the scale effects of the aperture and transmissivity fields. The fluid flow was simulated using different flow boundary conditions, corresponding to translational and rotary shear processes. Corresponding to translational shear (with a 1 mm shear displacement interval up to a maximum shear displacement of 20 mm), three different flow patterns, i.e., unidirectional (flow parallel with and perpendicular to the shear direction), bi-directional and radial, were taken into account. Corresponding to rotary shear (with a 0.5o shear angle interval up to 90o), only the radial flow pattern was considered. The particle transport was simulated using the Particle Tracking Method, with the particles motion following the fluid velocity fields during shear, as calculated by FEM. For the unidirectional particle transport, the breakthrough curves were analyzed by fitting to an analytical solution of 1-D advection-dispersion equation. The dispersivity, Péclet number and tracer velocity, as well as their evolutions during shear, were determined numerically. The results show that the fracture aperture increases anisotropically during translational shear, with a more pronounced increase in the direction perpendicular to the shear displacement, causing significant fluid flow channelling. A more significant increase of flow rate and decrease in travel time of the particles in the direction perpendicular to the shear direction is predicted. The particle travel time and characteristics are, correspondingly, much different when such effects caused by shear are included. This finding may have an important impact on the interpretation of the results of coupled hydro-mechanical and tracer experiments for measurements of hydraulic properties of rock fractures, because hydraulic properties are usually calculated from flow test results along the shear directions, with the effects of the significant anisotropic flow perpendicular to the shear direction ignored. The results also show that safety assessment of a nuclear repository, without considering the effects of stress/deformation of rocks on fluid flow and transport processes, may have significant risk potential. The results obtained from numerical simulations show that fluid flow through a single rough fracture changes with increasing sample size, indicating that representativehydro-mechanical properties of the fractures in the field can only be accurately determined using samples of representative sizes beyond their stationarity thresholds. / QC 20101207
3

Stress Effects on Solute Transport in Fractured rocks

Zhao, Zhihong January 2011 (has links)
The effect of in-situ or redistributed stress on solute transport in fractured rocks is one of the major concerns for many subsurface engineering problems. However, it remains poorly understood due to the difficulties in experiments and numerical modeling. The main aim of this thesis is to systematically investigate the influences of stress on solute transport in fractured rocks, at scales of single fractures and fracture networks, respectively. For a single fracture embedded in a porous rock matrix, a closed-form solution was derived for modeling the coupled stress-flow-transport processes without considering damage on the fracture surfaces. Afterwards, a retardation coefficient model was developed to consider the influences of damage of the fracture surfaces during shear processes on the solute sorption. Integrated with particle mechanics models, a numerical procedure was proposed to investigate the effects of gouge generation and microcrack development in the damaged zones of fracture on the solute retardation in single fractures. The results show that fracture aperture changes have a significant influence on the solute concentration distribution and residence time. Under compression, the decreasing matrix porosity can slightly increase the solute concentration. The shear process can increase the solute retardation coefficient by offering more sorption surfaces in the fracture due to gouge generation, microcracking and gouge crushing. To study the stress effects on solute transport in fracture systems, a hybrid approach combing the discrete element method for stress-flow simulations and a particle tracking algorithm for solute transport was developed for two-dimensional irregular discrete fracture network models. Advection, hydrodynamic dispersion and matrix diffusion in single fractures were considered. The particle migration paths were tracked first by following the flowing fluid (advection), and then the hydrodynamic dispersion and matrix diffusion were considered using statistic methods. The numerical results show an important impact of stress on the solute transport, by changing the solute residence time, distribution and travel paths. The equivalent dispersion coefficient is scale dependent in an asymptotic or exponential form without stress applied or under isotropic compression conditions. Matrix diffusion plays a dominant role in solute transport when the hydraulic gradient is small. Outstanding issues and main scientific achievements are also discussed. / QC 20111011
4

Numerická simulace porušování keramických pěn při mechanickém zatížení / Numerical simulation of failure of ceramic foams upon mechanical loading

Hanák, Jiří January 2019 (has links)
The master’s thesis deals with a numerical simulation of failure of ceramic foams with open-cell structure and with understanding of conditions required for the failure of the structure under various mechanical loading conditions. To this purpose, the so-called stress-energy coupled criterion was utilized. The motivation for this thesis was to create a model able of the most accurate prediction of the ceramic foam strength in comparison with experimental observations. First part of the thesis is focused on the theoretical background required for solving the problem. More specifically there are mentioned methods of the foam material modelling, Linear Elastic Fracture Mechanic (LEFM) and coupled stress-energy criterion used for definition of the crack initiation. In the second part of the thesis, numerical Finite Element Analyses (FEA) whose main purpose was to determine critical conditions necessary for the initiation of strut failure within the foam structure, were performed. These pieces of knowledge were then used for creation of the numerical simulation algorithm of the mechanical test of foam material with regular cell pattern. Outputs of numerical simulations were at the end of this work compared with experimental results (of the compression test) made on the real Al_2 O_3 foams prepared by 3D printing technology and provided by the Institute of Physics of Materials Czech Academy of Science. It can be concluded that a good agreement between results of both approaches was reached and the prediction of the ceramic foam mechanical strength using the developed model is in the meanwhile the most accurate estimation from recently published approaches.
5

Stress, Flow and Particle Transport in Rock Fractures

Koyama, Tomofumi January 2007 (has links)
The fluid flow and tracer transport in a single rock fracture during shear processes has been an important issue in rock mechanics and is investigated in this thesis using Finite Element Method (FEM) and streamline particle tracking method, considering evolutions of aperture and transmissivity with shear displacement histories under different normal stresses, based on laboratory tests. The distributions of fracture aperture and its evolution during shear were calculated from the initial aperture fields, based on the laser-scanned surface roughness features of replicas of rock fracture specimens, and shear dilations measured during the coupled shear-flow-tracer tests in laboratory performed using a newly developed testing apparatus in Nagasaki University, Nagasaki, Japan. Three rock fractures of granite with different roughness characteristics were used as parent samples from which nine plaster replicas were made and coupled shear-flow tests was performed under three normal loading conditions (two levels of constant normal loading (CNL) and one constant normal stiffness (CNS) conditions). In order to visualize the tracer transport, transparent acrylic upper parts and plaster lower parts of the fracture specimens were manufactured from an artificially created tensile fracture of sandstone and the coupled shear-flow tests with fluid visualization was performed using a dye tracer injected from upstream and a CCD camera to record the dye movement. A special algorithm for treating the contact areas as zero-aperture elements was used to produce more accurate flow field simulations by using FEM, which is important for continued simulations of particle transport, but was often not properly treated in literature. The simulation results agreed well with the flow rate data obtained from the laboratory tests, showing that complex histories of fracture aperture and tortuous flow channels with changing normal stresses and increasing shear displacements, which were also captured by the coupled shear-flow tests of fracture specimens with visualization of the fluid flow. From the obtained flow velocity fields, the particle transport was predicted by the streamline particle tracking method with calculated flow velocity fields (vectors) from the flow simulations, obtaining results such as flow velocity profiles, total flow rates, particle travel time, breakthrough curves and the Péclet number, Pe, respectively. The fluid flow in the vertical 2-D cross-sections of a rock fracture was also simulated by solving both Navier-Stokes (NS) and Reynolds equations, and the particle transport was predicted by streamline particle tracking method. The results obtained using NS and Reynolds equations were compared to illustrate the degree of the validity of the Reynolds equation for general applications in practice since the later is mush more computationally efficient for large scale problems. The flow simulation results show that the total flow rate and the flow velocity predicted by NS equations are quite different from that as predicted by the Reynolds equation. The results show that a roughly 5-10 % overestimation on the flow rate is produced when the Reynolds equation is used, and the ideal parabolic velocity profiles defined by the local cubic law, when Reynolds equation is used, is no longer valid, especially when the roughness feature of the fracture surfaces changes with shear. These deviations of flow rate and flow velocity profiles across the fracture aperture have a significant impact on the particle transport behavior and the associated properties, such as the travel time and Péclet number. The deviations increase with increasing flow velocity and become more significant when fracture aperture geometry changes with shear. The scientific findings from these studies provided new insights to the physical behavior of fluid flow and mass transport in rock fractures which is the scientific basis for many rock mechanics problems at the fundamental level, and with special importance to rock engineering problems such as geothermal energy extraction (where flow rate in fractures dominates the productivity of a geothermal energy reservoir) and nuclear waste repositories (where radioactive nuclides transport through fractures dominates the final safety evaluations) in fractured rocks. / Vätskeflödet och spårämnestransporten i en enskild bergsspricka under skjuvningsprocesser har varit ett viktigt ämne inom bergmekanik. I denna avhandling undersöks ämnet med hjälp av finita element metoden (FEM) och en strömlinjebaserad partikelspårningsmetod. Hänsyn tas till utveckling av öppningar och transmissivitet med skjuvningens förflyttningshistoria under olika normala belastningar baserat på laboratorietester. Fördelningen av spricköppningar och deras utveckling under skjuvning beräknades från de initiala öppningsfälten baserat på det laserscannade provets ytas grovhetskännetecken sam tskjuvningsöppningar uppmätta under de kopplade skjuvning-flöde-spårämneslaboratorietesterna som utförts med nyutvecklad testapparatur i Nagasaki Universitet i Nagasaki, Japan. Tre bergssprickor i granit med olika grovhetskarakteristika användes som utgångsprover från vilka nio gipskopior gjordes. Kopplade skjuvning-flödes tester utfördes sedan under tre normala belastningstillstånd (två nivåer med konstant normal last (KNL) och en konstant normal styvhetstillstånd (KNS). För att visualisera spårämnestransporten tillverkades en transparent övre del av sprickproverna av akryl och en nedre del av gipsbaserat på en kostgjord spänningsspricka i sandsten och de kopplade skjuvning-flödes testerna med vätskevisualisering utfördes med färgspårämne injekterat uppströms och en CCD kamera monterad ovanför för att registrera färgens rörelse. En särskild algoritm användes för att behandla kontaktytorna som nollöppningsämnen användes för att åstadkomma mer exakta flödesfältssimuleringar med FEM. Detta är viktigt för kontinuerliga simuleringar av partikelflöden men uppmärksammas oftast inte tillräckligt i litteraturen. Simuleringsresultaten överensstämde väl med de flödesnivådata som erhölls från laboratorietesterna vilket visade att komplexa historier av spricköppningar och invecklade flöden överensstämde med ändrade normala belastningar och ökande skjuvningsförflyttningar, vilket även fångades av de kopplade skjuvning-flödestesterna av sprickproverna genom visualisering av vätskeflödet. Från de erhållna flödesfälten förutsågs partikeltransporten genom en strömlinjebaserad partikelspårningsmetod med kalkylerade flödeshastighetsfält (vektorer) från flödessimuleringarna genom vilka resultat som flödeshastighetsprofiler, totala flödesnivåer,partikeltransporttid, genombrottskurvor samt Pécletnumret, Pe, erhölls. Vätskeflödet i det vertikala tvådimensionella tvärsnittet av en bergsspricka simulerades även genom att både Navier-Stokes (NS) och Reynoldsekvationerna löstes och partikeltransporten förutsågs genom den strömlinjebaserade partikelspårningsmetoden. Resultaten som erhöllsmed NS och Reynoldsekvationerna jämfördes för att illustrera graden av tillförlitlighet för Reynoldsekvationen för allmänna tillämpningar i praktiken då den senare är betydligt mer beräkningseffektiv för storskaliga problem. Resultaten från flödessimuleringarna visar att den totala flödesnivån och den totala flödeshastigheten förutsedda med NS ekvationer är helt annorlunda motsvarande värden som förutsågs med Reynoldsekvationen. Resultaten visar att en ca 5-10 % för hög uppskattning av flödesnivån erhålls då Reynoldsekvationen används och de ideala parabola hastighetsprofilerna, som definieras av den lokala kubiklagen när Reynoldsekvationen används, inte längre är giltiga särskilt när sprickytornas grovhetskarakteristika ändras med skjuvning. De här avvikelserna i flödesnivå och flödeshastighetsprofiler längs med spricköppningen har en betydande påverkan på partikeltransportuppträdande och de tillhörande egenskaperna såsom rörelsetid och Pécletnummer. Avvikelserna ökar med ökande flödeshastighet och blir mer signifikanta när spricköppningarnas geometri ändras med skjuvning. Forskningsresultaten från dessa studier gav nya insikter i de fysiska uppträdandet av vätskeflöde och masstransporter i bergssprickor vilket är den vetenskapliga basen för många bergmekanikproblem på grundläggande nivå och som har särskild vikt för bergstekniksproblem såsom geotermisk energiutvinning (där flödesnivå i sprickor dominerar produktiviteten för en geotermisk energikälla) och kärnavfallsförvaringsplatser (där transporten av radioaktiva nuklider genom sprickor dominerar den slutgiltigasäkerhetsutvärderingen) i sprickigt berg. / QC 20100803
6

Vliv zbytkových napětí na kontaktní porušování keramických laminátů / Influence of the residual stresses on the contact failure of ceramic laminates

German, Roman January 2018 (has links)
The presence of the compressive or tensile thermal residual stresses in layers of a ceramic laminate induced due to different volume change of each layer´s material during the cooling from the sintering temperature can considerably affect resistivity of ceramics against contact damage. Within this work 2D parametric FEM models were created, in order to study the effect of the surface layer thickness, residual stress values and indenting body dimension on the initiation and propagation of the cone crack in the surface layer of the laminate. For the analysis of the critical conditions for the crack initiation, the coupled stress-energy criterion was used and for the determination of the direction of crack propagation we used the maximum tangential stress criterion. The results show that compressive thermal stresses in the surface layer increase the critical force for the crack initiation, shorten the crack distance from the contact area and shorten the occurred crack itself. Moreover, the compressive stresses enlarge the angle of the crack declination during the propagation process which cause an earlier crack arrest. The tensile thermal stresses have exactly the opposite effect. Results of simulations were compared to experimental results but due to lack of available measurements, the verification is partially limited.
7

Investigating the Need for Drainage Layers in Flexible Pavements

Masoud Seyed Mohammad Ghavami (6531011) 10 June 2019 (has links)
<p>Moisture can significantly affect flexible pavement performance. As such, it is crucial to remove moisture as quickly as possible from the pavements, mainly to avoid allowing moisture into the pavement subgrade. In the 1990s the Indiana Department of Transportation (INDOT) adopted an asphalt pavement drainage system consisting of an open-graded asphalt drainage layer connected to edge drains and collector pipes to remove moisture from the pavement system.</p> <p>Over the intervening two decades, asphalt pavement materials and designs have dramatically changed in Indiana, and the effectiveness of the pavements drainage system may have changed. Additionally, there are challenges involved in producing and placing open-graded asphalt drainage layers. They can potentially increase costs, and they tend to have lower strength than traditional dense-graded asphalt pavement layers. </p> <p>Given the potential difficulties, the overall objective of this research was to evaluate the effectiveness of the INDOT’s current flexible pavement drainage systems given the changes to pavement cross-sections and materials that have occurred since the open-graded drainage layer was adopted. Additionally, the effectiveness of the filter layer and edge drains were examined.</p><p><br>Laboratory experiments were performed to obtain the hydraulic properties of field-produced asphalt mixture specimens meeting INDOT’s current specifications. The results were used in finite element modeling of moisture flow through pavement sections. Modeling was also performed to investigate the rutting performance of the drainage layers under various traffic loads and subgrade moisture conditions in combination with typical Indiana subgrade soils. The modeling results were used to develop a design tool that can assist the pavement designer in more accurately assessing the need for pavement drainage systems in flexible pavements.<br></p>

Page generated in 0.0749 seconds