• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 882
  • 181
  • 138
  • 120
  • 41
  • 35
  • 33
  • 28
  • 10
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • Tagged with
  • 1827
  • 320
  • 319
  • 228
  • 214
  • 198
  • 191
  • 181
  • 176
  • 163
  • 160
  • 149
  • 131
  • 121
  • 119
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Model Analysis of Plasma-Surface Interactions during Silicon Oxide Etching in Fluorocarbon Plasmas / フルオロカーボンプラズマによる酸化シリコンエッチングにおけるプラズマ-表面相互作用の数値解析

Fukumoto, Hiroshi 23 May 2012 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第17064号 / 工博第3613号 / 新制||工||1548(附属図書館) / 29784 / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 斧 髙一, 教授 稲室 隆二, 教授 青木 一生 / 学位規則第4条第1項該当
242

Radiation damage analysis of the swept charge device for the C1XS instrument

Gow, Jason Peter David January 2010 (has links)
This thesis is concerned with ensuring high energy resolution from the swept charge device (SCD) CCD54, essentially a non-pixellated version of the charge coupled device (CCD), for use in the Chandrayaan-1 X-ray Spectrometer (C1XS). Of particular interest is the effect on performance due to the radiation damage, caused by protons, the CCD54s used in C1XS will receive during the transfer to the Moon and during the two years in lunar orbit. Chapter 2 reviews the atomic structure, the formation and detection of X-rays, and the operation of a CCD. Chapter 3 discusses the space radiation environment and the damaging effects it has on CCDs, for example increasing dark current and charge transfer inefficiency. Chapter 4 presents the basic laboratory equipment and procedure used during the experimental work, and details the initial optimisation and characterisation, the pre-flight characterisation of devices available for use in C1XS, the measurement of the depletion depth, and quantum efficiency of the CCD54. Chapter 5 details the results of the initial proton irradiation study, intended to demonstrate the ability of the CCD54 to provide excellent scientific data over the two years at the Moon. Chapter 6 describes a second irradiation study covering a more detailed investigation of the damage effects, investigating dark current, trap energy levels, and charge transfer inefficiency. Chapter 7 describes work conducted to assist the C1XS science team in the development of an X-ray fluorescence model, to be used with X-ray spectra provided by the X-ray solar monitor and the spectra detected by C1XS, to provide elemental abundance information of the lunar surface. It also presents the initial C1XS results from the Moon, and a brief comparison of the CCD54 with other semiconductor X-ray fluorescence detectors. Chapter 8 describes the final conclusions and recommendations for further work, including a study of the radiation damage effects during the two years at the Moon and the future development of SCD detectors for use in space.
243

Identification of the sources of, and subsequent minimization of the uncertainties associated with the measurement of minor elements in PGM furnace matte by ICP-MS

Goso, Xolisa Camagu 31 March 2009 (has links)
M.Tech. / The Inductively Coupled Plasma Mass Spectrometry (ICP-MS) technique showed very high uncertainties associated with the determination of the concentrations of minor elements in the Platinum Group Metal (PGM) smelting plant samples. This project reports on the work done for the identification of, and subsequent minimisation of the sources of uncertainties associated with the measurements of minor elements in the PGM Furnace Matte material by ICP-MS. To perform these studies, Elan 6000, Shimadzu ICPM-8500 and Finnigan Element 2 ICP-M spectrometers were employed. Synthetic Furnace Matte samples (SFMSs) were prepared and used to ascertain the uncertainties associated with the alleged sources at Mintek and Leo-Tech laboratories. The Element 2 spectrometer dominated the other two ICP-M spectrometers in terms of the accuracy for the determination of the concentrations of minor elements in SFMSs. The evidence of spectral interferences from the significant deviations in the measurement results between the isotopes of the same element was observed in the quantification of Zn, Se, Te and Sn in SFMS by the quadrupole Elan 6000 and the Shimadzu spectrometers. It also transpired that the accuracy of the quantitative determination of minor elements in the Furnace Matte (FM) matrix by ICP-MS was hampered by the matrix elements with the severity depending on the specific analyte and the make and model of the ICP-M spectrometer. The Anglo platinum FM material that was analysed in the second round robin was used as a Certified Reference Material (CRM) in the analysis of the Lonmin FM sample. It was revealed that the laboratory standard operating procedures for the preparation, dilution and subsequent analysis of the sample are potential sources of uncertainty in measurement results. The two-fold dilution of the sample for the lessening of the matrix effects was not effective. The use of multi-walled nanotubes for the alleviation of the matrix effects by removal was also not successful. Nevertheless standard addition method (SAM), combined with internal standardisation can be used as an effective calibration method in ICP-MS to achieve less matrix interfered results over the combination of the common external standardisation and internal standardisation methods.
244

A transient computational fluid dynamic study of a laboratory-sclale fluorine electrolysis cell

Pretorius, Ryno 07 December 2011 (has links)
Fluorine gas is produced industrially by electrolysing hydrogen fluoride in a potassium acid fluoride electrolyte. Fluorine is produced at the carbon anode, while hydrogen is produced at the mild-steel cathode. The fluorine produced has a wide range of uses, most notably in the nuclear industry where it is used to separate 235U and 238U. The South African Nuclear Energy Corporation (Necsa) is a producer of fluorine and requested an investigation into the hydrodynamics of their electrolysis cells as part of a larger national initiative to beneficiate more of South Africa’s large fluorspar deposits. Due to the extremely corrosive and toxic environment inside a typical fluorine electrolysis reactor, the fluid dynamics in the reactor are not understood well enough. The harsh conditions make detailed experimental investigation of the reactors extremely dangerous. The objective of this project is to construct a model that can accurately predict the physical processes involved in the production of fluorine gas. The results of the simulation will be compared to experimental results from tests done on a lab-scale reactor. A good correlation between reality and the simulacrum would mean engineers and designers can interrogate the inner operation of said reactors safely, effortlessly and economically. This contribution reports a time-dependent simulation of a fluorine-producing electrolysis reactor. COMSOL Multiphysics was used as a tool to construct a two dimensional model where the charge-, heat-, mass- and momentum transfer were fully coupled in one transient simulation. COMSOL is a finite element analysis software package. It enables the user to specify the dimensions of his/her investigation and specify a set of partial differential equations, boundary conditions and starting values. These equations can be coupled to ensure that the complex interaction between the various physical phenomena can be taken into account - an absolute necessity in a model as complex as this one. Results produced include a set of time dependent graphics where the charge-, heat-, mass- and momentum transfer inside the reactor and their development can be visualized clearly. The average liquid velocity in the reactor was also simulated and it was found that this value stabilises after around 90 s. The results of each transfer module are also shown at 100 s, where it is assumed that the simulation has achieved a quasi-steady state. The reactor, on which the model is based, is currently under construction and will be operated under the same conditions as specified in the model. The reactor, constructed of stainless steel, has a transparent side window through which both electrodes can clearly be seen. Thus the bubble formation and flow in the reactor can be studied effectively. Temperature will be measured with a set of thermocouples imbedded in PTFE throughout the reactor. The electric field will similarly be measured using electric induction probes. / Dissertation (MEng)--University of Pretoria, 2012. / Chemical Engineering / unrestricted
245

Characterization of essential oils by comprehensively coupled supercritical fluid and gas chromatography (SFCxGC)

Makgwane, Peter Ramashadi 22 February 2007 (has links)
Essential oils are amongst the most complex samples an analyst can face in terms of the number of compounds involved. In many cases, minor components are of interest as they can impart a distinctive fragrance character to the oil. Because of the closely related structures and molecular weights among terpenes, positive identification of individual compounds is very difficult with a single chromatographic technique. Further, most of the analytical information is lost when a single technique is used because of the limited peak capacity and the resulting peak overlap. For many years, gas chromatography coupled to mass spectrometry (GC-MS) has been the benchmark technique for qualitative and quantitative analysis of essential oils. Retention indices and mass spectra have to be used in combination for confirmation of the identity of components in an essential oil. Other multidimensional or hyphenated techniques also offer advantages that aid in the identification of essential oil components. This thesis demonstrates the application of a comprehensively coupled supercritical fluid and fast temperature programmed gas chromatograph (SFCxGC) to the analysis of essential oils. An SFCxGC instrument was used to analyse the essential oils of Cymbopogon (lemongrass), Artemisia afra (wilde als), Tagetes minuta (kakiebos) and Pelargonium (geranium) species. The unique application of a porous layer open-tubular (PLOT) column, used in conjunction with supercritical carbon dioxide is demonstrated to effect group separation of polar, oxygenated compounds. This separation and elution of very polar compounds from a silica gel column is believed to occur due to the reduced phase ratio (ƒÒ) of the system obtained by increasing the volume available to the mobile phase compared to that of a packed column. This separation obtained in the SFC is used to separate essential oils into different chemical classes such as non-polars, ethers, alcohols. Separated chemical classes are re-injected on-line by use of a modulator into a fast, second dimension, temperature programmed GC to effect separation of individual compounds based on their volatility. The entire sample is analysed by both the SFC and GC in such a way that the resolution obtained in the first dimension is conserved by the GC analyses. By using a range of standards, some of the peaks in these oils could be assigned. The identification of compounds was greatly aided by the combination of the two separation dimensions. The comprehensive two-dimensional technique arranges component peaks in a plane from which chemical class and volatility information of each component is readily obtained. The elution pattern within the two-dimensional chromatograms may also be used for direct comparison of oils without identification of the components in the essential oils. / Dissertation (MSc (Chemistry))--University of Pretoria, 2007. / Chemistry / unrestricted
246

Recommendation Approaches Using Context-Aware Coupled Matrix Factorization

Agagu, Tosin January 2017 (has links)
In general, recommender systems attempt to estimate user preference based on historical data. A context-aware recommender system attempts to generate better recommendations using contextual information. However, generating recommendations for specific contexts has been challenging because of the difficulties in using contextual information to enhance the capabilities of recommender systems. Several methods have been used to incorporate contextual information into traditional recommendation algorithms. These methods focus on incorporating contextual information to improve general recommendations for users rather than identifying the different context applicable to the user and providing recommendations geared towards those specific contexts. In this thesis, we explore different context-aware recommendation techniques and present our context-aware coupled matrix factorization methods that use matrix factorization for estimating user preference and features in a specific contextual condition. We develop two methods: the first method attaches user preference across multiple contextual conditions, making the assumption that user preference remains the same, but the suitability of items differs across different contextual conditions; i.e., an item might not be suitable for certain conditions. The second method assumes that item suitability remains the same across different contextual conditions but user preference changes. We perform a number of experiments on the last.fm dataset to evaluate our methods. We also compared our work to other context-aware recommendation approaches. Our results show that grouping ratings by context and jointly factorizing with common factors improves prediction accuracy.
247

Imaging of soil moisture in the root zone using capacitively coupled electrodes

Newill, Paul Anthony January 2014 (has links)
This research explores the use of insulated electrodes to determine electrical impedance distributions within soil cores. It is used to infer the effect of roots on soil moisture which, in turn, can provide knowledge relating to crop breeding programmes. These programmes are becoming increasingly important in order to address challenges posed by global population growth and climate change. Direct contact electrical impedance measurements in soil are frequently used but these are vulnerable to electrochemical effects and corrosion. Insulated electrodes are used in the present work to overcome these difficulties and a modified electrode model has been proposed. Measurements require the acquisition of spectroscopic complex impedance and extraction of the real impedance to infer soil moisture content. Calculated and simulated impedance, from the analytical solution and an FEM model respectively, were compared to measurements performed within a parallel-plate test cell containing saline solutions. The effects of moisture, compaction and temperature on soil impedance measurements have been explored. Finally, two growth trials using maize plants and control vessels were performed to create 2D images of impedance distributions, from which moisture placement was inferred. Results show that for saline electrolytes, the insulated electrode method was capable of estimating the impedance of tap water to within 10% of calibrated laboratory equipment. For soil based measurements, the variation of moisture content from 5-30% resulted in a 1000-fold decrease in impedance. The change was most significant in drier soils. For compaction based testing, at 5% moisture content soil impedance decreased by approximately 40%, compared to only 20% in the wettest samples. Temperature testing revealed an impedance change of approximately 2%/ °C, in agreement with earlier reports. Plant growth trials revealed increases in electrical impedance due to soil drying from an initial value of 1-2kΩ when the soil was wetted to field capacity, to as much as 60kΩ when dry. Only small changes were evident in the control vessels. It was also found that areas exposed to potential evaporation, such as at the surface closest to the plant stem, suffered significant losses in moisture content, reaching as high as 15-20kΩ. This research utilises a measurement technique which has not previously been used to measure soil impedance to infer moisture content. The research also found that the scaling of a thin layer within an FEM model can significantly reduce computational demands, while retaining accuracy, and allow more complex FEM simulations to be performed on a less powerful computer.
248

Role of alpha-ketoglutarate receptor G-protein coupled receptor 99 (GPR99) in cardiac hypertrophy

Omede, Ameh January 2015 (has links)
Cardiac hypertrophy and heart failure (HF) remains one of the major health problems in the UK and worldwide. However, advances in their management are limited because the underlying pathological mechanisms are not completely understood. Therefore, it is important to understand novel signalling pathways leading to HF. Myocardial hypertrophy is a crucial pathophysiological process that can lead to the development of HF. Signalling initiated by members of G-protein-coupled receptors (GPCRs) proteins plays an important role in mediating cardiac hypertrophy. One member of this family, the G-protein coupled receptor 99 (GPR99), may have a crucial role in the heart because it acts as a receptor for alpha-ketoglutarate, a metabolite that is elevated in heart failure patients. GPR99 is expressed in the heart, but its precise function during cardiac pathophysiological processes is unknown. The aim of this PhD study is to investigate the role of GPR99 during cardiac hypertrophy. In this study I used in vivo and in vitro approaches to investigate whether GPR99 is directly involved in mediating cardiac hypertrophy. Mice with genetic deletion of GPR99 (GPR99-/-) exhibited a significant increase in hypertrophy following two weeks of transverse aortic constriction (TAC) as indicated by heart weight/tibia length ratio (HW/TL). In addition, GPR99-/- mice displayed increased cardiomyocytes cross-sectional area (CSA) after TAC compared to wild-type (WT) littermates. Hypertrophic markers such as brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) were also elevated in GPR99-/- mice following TAC compared to WT mice. Although interstitial fibrosis was indistinguishable in both genotypes after TAC, a precursor of fibrosis, collagen, type III, alpha1 (COL3A1) was elevated in GPR99-/- mice compared to WT mice after TAC. The baseline cardiac function as indicated by ejection fraction (EF) and fractional shortening (FS) were reduced in GPR99-/- mice compared to WT littermates following TAC. Furthermore, left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), interventricular septum wall thickness (IVS) and posterior wall thickness at diastole (PW) indicated profound wall thickening and enlargement of the left ventricular (LV) chamber in GPR99-/- mice compared to WT littermates after TAC. In an attempt to examine the mechanism through which GPR99 signals during hypertrophy, I performed molecular analyses based on the data from yeast two hybrid screening showing that GPR99 interacted with COP9 signalosome element 5 (CSN5). Using immunoprecipitation assay, I found that GPR99 formed a ternary complex with CSN5 and non-receptor tyrosine kinase 2 (TYK2). TYK2 is known as a regulator of pro-hypertrophic molecules including signal transducer and activation of transcription 1 (STAT1) and STAT3. I found that the activation of these molecules was increased in GPR99-/- mice following TAC and correspondingly, adenovirus-mediated overexpression of GPR99 in neonatal rat cardiomyocytes (NRCM) blunted TYK2 phosphorylation. In conclusion, my study has identified GPR99 as a novel regulator of pathological hypertrophy via the regulation of the STAT pathway. Identification of molecules that can specifically activate or inhibit this receptor may be very useful in the development of a new therapeutic approach for cardiac hypertrophy in the future.
249

Anisotropy tuning in Co/Pd multilayers : for application in exchange-springs

Barton, Craig Wesley January 2014 (has links)
Exchange–spring systems have been proposed as one method of addressing the media trilemma, where a balance must be maintained between thermal stability, writeability and signal to noise ratio. High anisotropy films coupled to low anisotropy films, in bit patterned media (BPM), via the exchange interaction allow the reversal mechanism to be tailored such that thermal stability is maintained whilst the switching field remains realisable in terms of available write elements. Understanding how the exchange interaction is mediated by through exchange break layers (EBL) is key in successfully creating an optimal exchange spring structure based on Co/Pd thin films for applications such as BPM.The work presented in this thesis shows that the perpendicular magnetic anisotropy (PMA) ofCo/Pd magnetic multilayers can be tuned by varying the Ar ion energy during deposition, usingremote plasma sputtering. This provides a novel method of tailoring the PMA without affecting the film composition and reduces the need for post fabrication processing. It is demonstrated that the reduction in PMA is due to chemical intermixing at the multilayer interface as the Ar ion energy is increased. This provides a method of creating two phase or graded exchange–spring materials for data storage or spin torque applications. In–situ anisotropy tuning was used to create hard and soft magnetic phases using Co/Pd multilayers to explore the effect of an exchange break layer (EBL) on exchange coupling. The relative coupling was investigated using Pd and Ta as the exchange break layer in two–phase anisotropy systems. The exchange–spring effect was found to extend 4 nm in the case of a Pd, whereas in the case of a Ta EBL only a 0.5 nm layer exhibited the same effect. These results highlight the importance of the choice of material for the EBL on the effective performance of the exchange–spring.
250

Optical charge injection into a gallium arsenide acoustic charge transport device

Beggs, Bruce Cameron January 1987 (has links)
There is a need for monolithic devices capable of spatial resolution in imaging and ionizing radiation detection. In this thesis, a GaAs acoustic charge transport device (ACT) was studied for this purpose. A new method of charge injection has been demonstrated for the ACT. Using near-infrared optical pulses incident through thin semi-transparent chromium windows, electron-hole-pairs were separated by the electric field in a depleted n-type channel region of the device. For light penetration less than the depth of the electron potential minimum, and for small injection levels, calculations indicated that electrons and holes were separated at their saturation velocities. Holes moving toward the surface of the substrate could recombine with electrons at an evaporated Schottky metal plate. Electrons moving toward the channel centre were bunched and transported by the electric field coupled to a <110> propagating surface acoustic wave (SAW) on (100) cut GaAs. Quantum efficiency, defined as the number of electrons collected at the output per incident photon on the GaAs surface, was greater than 9% at an optical wavelength of 730 nm. When compensation was made for the loss and reflection due to the chromium windows, the quantum efficiency was in excess of 24%. Charge transfer efficiency was greater than 0.992 with the ACT clocked at 360 MHz. The demonstrated optical injection technique may be of use in future ACT imaging devices. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate

Page generated in 0.0477 seconds