Spelling suggestions: "subject:"courbes modulaire dde drinfeld"" "subject:"courbes modulaire dde grinfeld""
1 |
Torsion rationnelle des modules de DrinfeldArmana, Cécile 05 November 2008 (has links) (PDF)
Cette thèse étudie l'existence de points de torsion pour les modules de Drinfeld de rang 2 sur des extensions finies de F_q(T), pour q puissance d'un nombre premier. Notre approche suit celle de Mazur et Merel pour la torsion des courbes elliptiques sur les corps de nombres : nous introduisons un quotient de la jacobienne d'une courbe modulaire de Drinfeld, défini à l'aide d'un symbole modulaire de Teitelbaum particulier, et étudions ses propriétés. Sous une hypothèse de dualité entre algèbre de Hecke et formes modulaires pour F_q[T], ainsi qu'une hypothèse technique mineure, on montre le résultat suivant : s'il existe un module de Drinfeld de rang 2 sur une extension de degré au plus q de F_q(T), muni d'un point de torsion d'ordre un idéal premier n de F_q[T], alors le degré de n est au plus max(q,4). Nous utilisons pour cela une description de l'action de l'algèbre de Hecke sur les symboles modulaires de Teitelbaum et sur les formes modulaires pour F_q[T]. Lorsque le degré de n est petit, on obtient des résultats non conditionnels : il n'existe aucun module de Drinfeld de rang 2 sur une extension de degré au plus 2 (resp. au plus 3) de F_q(T) possédant un point de torsion d'ordre un idéal premier de degré 3 (resp. de degré 4 si q est au moins 7). Cela confirme partiellement une conjecture de Poonen et Schweizer de borne uniforme sur la torsion des modules de Drinfeld.
|
Page generated in 0.0776 seconds