• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Contribution of Outdoor Recreation on Rural Property Sales in Mississippi

Brashier, Jerry 13 December 2014 (has links)
To estimate the contribution of outdoor recreation on rural property sales in Mississippi, information was collected from lenders and appraisers associated with the Federal Land Bank, Mossy Oak Properties, and Rutledge Investment Company on properties sold from 2003-2008 in three regions of Mississippi: Mississippi Delta/Hills Region, North Mississippi Region and South Mississippi Region. Property sales information was collected on 102,747 hectares (ha) of rural properties valued at $475.1 million. Hedonic regression analysis was used to quantify the contribution of outdoor recreation on Total Sale Value (TSV). Outdoor recreation contributed $160.6 million of the TSV. Forests comprised 71% of land coverage statewide. Attributes that were related to TSV statewide were row crop lands, bottomland hardwood forests, mixed pine-hardwood forests, planted pine forests, pasture/fallow fields, natural pine forests, upland hardwood forests, cutover woodland forests, and overnight sleeping quarters. Attributes related to TSV varied across the three regions. Statewide, hunting was expected to be conducted on at least 96% of the properties sold. In the Mississippi Delta/Hills Region, outdoor recreation contributed the greatest percent increase in land value (55.4%) and properties leased for a greater value ($58.70 per ha). Information provided by this study will encourage rural property owners to justify enhancements of wildlife habitats, provide recreational opportunities, and enhance their income. Rural land appraisers will use the information to appraise lands more accurately, and resource and regulatory agencies will use it to protect wetlands and other sensitive lands or mitigate for adverse impacts.
2

Land Surface Emissivity Variations At Infrared Wavelegths For The Selected Regions In Turkey

Akyuz, Berat 01 September 2011 (has links) (PDF)
In this thesis, land surface emissivity variations are examined with respect to the land surface type, wavelength, and time (season and month) for the seven selected regions in Turkey using MODIS emissivity database and precipitation amount. Investigating land surface emissivity variations are important in many applications and it is known that studies about these variations are done for many regions except Turkey. This study is prior knowledge for Turkey to be used in infrared (IR) background models, surface radiation budget calculations, and land cover type classifications specific for Turkey. The results indicate that precipitation has a great influence on monthly/seasonal emissivity values depending on the land cover type and causes spectral emissivity variations. As a result, we determined appropriate IR wavelengths for the investigation of the seasonal emissivity variations and seasonal factors causing emissivity variations according to the land cover types.
3

Effects of GPS Error on Animal Home Range Estimates

Hyzer, Garrett 01 January 2012 (has links)
This study examined how variables related to habitat cover types can affect the positional accuracy of Global Positioning System (GPS) data and, subsequently, how wildlife home range analysis can be influenced when utilizing this inaccurate data. This study focused on measuring GPS accuracy relative to five habitat variables: open canopy, sparse canopy, dense canopy, open water, and building proximity. The study took place in Hillsborough County, in residential areas that contain all of these habitat types. Five GPS devices, designed for wildlife tracking purposes, were used to collect the data needed for this study. GPS data was collected under the aforementioned scenarios in order to induce error into the data sets. Each data set was defined as a 1-hour data collecting period, with a fix rate of 60 seconds, which resulted in 60 points per sample. The samples were analyzed to determine the magnitude of effect the five variables have on the positional accuracy of the data. Thirty samples were collected for each of the following scenarios: (1) open grassland with uninhibited canopy closure, (2) sparse vegetation canopy closure, (3) dense vegetation canopy closure, (4) close proximity to buildings (<2 m), and (5) open water with uninhibited canopy closure. Then, GPS errors (in terms of mean and maximum distance from the mean center of each sample) were calculated for each sample using a geographic information system (GIS). Confidence intervals were calculated for each scenario in order to evaluate and compare the levels of error. Finally, this data was used to assess the effect of positional uncertainty on home range estimation through the use of a minimum convex polygon home range estimation technique. Open grassland and open water cover types were found to introduce the least amount of positional uncertainty into the data sets. The sparse coverage cover type introduces a higher degree of error into data sets, while the dense coverage and building proximity cover types introduce the greatest amount of positional uncertainty into the data sets. When used to create minimum convex polygon home range estimates, these data sets show that the home range estimates are significantly larger when the positional error is unaccounted for as opposed to when it is factored into the home range estimate.
4

Competitive status of red spruce (Picea rubens) and Fraser fir (Abies fraseri) at ecotonal transitions in southern Appalachian sky islands

Wetzel, Rose 05 July 2024 (has links)
Southern Appalachian spruce-fir sky islands are globally threatened, boreal relict forests where red spruce (Picea rubens) and Fraser fir (Abies fraseri) are dominant. Fraser fir dominates at the highest elevations with spruce-fir and spruce-dominated stands at middle elevations and hardwoods associating at lower elevations. A primary concern is encroachment of hardwoods upslope as climate change-driven milder temperatures and high precipitation confine spruce-fir forests to even higher elevations. We performed a dendrochronological analysis of growth rates in red spruce, Fraser fir, and competing hardwoods between cover types and slope aspects at six sky islands. We created linear models to test effects of aspect, cover type, and year on basal area growth measurements of red spruce, Fraser fir, and hardwoods to assess effects of competition. Growth rates were significantly affected by species, aspect, cover type, and year, and generally increased over time. Red spruce growth rates varied by combination of aspect and cover type but were greater than those of hardwoods on northern and southern aspects. Fraser fir growth rates were negative on southern-facing fir-dominated stands but increased in all other stands with the highest growth rates found in fir-dominated stands. The differences we report by cover type and aspect could help conservation practitioners prioritize treatment locations to improve climate resiliency. / Master of Science / Southern Appalachian spruce-fir sky islands are globally threatened, boreal relict forests where red spruce (Picea rubens) and Fraser fir (Abies fraseri) are dominant. Fraser fir dominates at the highest elevations with spruce-fir and spruce-dominated stands at middle elevations and hardwoods associating at lower elevations. A primary concern is encroachment of hardwoods upslope as climate change-driven milder temperatures and high precipitation confine spruce-fir forests to even higher elevations. We performed a dendrochronological analysis of growth rates in red spruce, Fraser fir, and competing hardwoods between cover types and slope aspects at six sky islands. We created linear models to test effects of aspect, cover type, and year on basal area growth measurements of red spruce, Fraser fir, and hardwoods to assess effects of competition. Growth rates were significantly affected by species, aspect, cover type, and year, and generally increased over time. Red spruce growth rates varied by combination of aspect and cover type but were greater than those of hardwoods on northern and southern aspects. Fraser fir growth rates were negative on southern-facing fir-dominated stands but increased in all other stands with the highest growth rates found in fir-dominated stands. The differences we report by cover type and aspect could help conservation practitioners prioritize treatment locations to improve climate resiliency.

Page generated in 0.3773 seconds