Spelling suggestions: "subject:"co2"" "subject:"cox""
11 |
Development of a DNA barcode for species identification of tunaNordquist, Clara, Edwall, Jonathan, Eriksson, Leonora, Mäkinen, Nelly, Sayehban, Minna, Styfberg, Matilda January 2022 (has links)
Today, DNA-barcoding with the gene COI is regularly used in the identification of fish. However, this is not an adequate way of identifying species of tuna due to COI lacking sufficient interspecies divergence. This is problematic since fraud and mislabeling are a major concern within the fish and tuna industries. Thus, there is a need for a new genetic barcode region when identifying the 15 tuna species within the tribe Thunnini. This study has considered six mitochondrial genetic regions (16S, ATP8, COII, CR, CytB, and ND2) and their potential as barcodes in comparison to COI. To be of practical use, the barcode has to be able to differentiate between all 15 tuna species, as well as contain conserved primer binding sites and be approximately 400 bp, or shorter. Analyses of the regions were made through Multiple Sequence Alignments built using ClustalW in Mega 11.0. The candidates were first evaluated through neighbor-joining trees and plots of inter- and intraspecies variation, and then analyzed further in search of conserved regions for primer binding, flanking a segment of approximately 400 bp (or shorter). This resulted in two possible barcode candidates with corresponding primers from the CR and ND2 genes. As a final step, these two were analyzed for specificity using BLAST, to evaluate their actual utility in differentiating the tuna species. The results show that they both can identify the different tuna species, but that ND2 is superior with 100% identification accuracy. In addition to the theoretical analysis, the ability of the primers was measured through a real PCR amplification. Unfortunately, only the CR barcode could be evaluated, but the results show it to be practically useful. Even though the utility of ND2 in PCR could not be analyzed, it is highly recommended as a region for further investigations. Given the strong theoretical support, it definitely shows promise as a new barcode for species identification of tuna.
|
12 |
Démystifier le lien entre la double transmission uniparentale des mitochondries et la détermination du sexe chez les bivalvesCapt, Charlotte 08 1900 (has links)
Les systèmes sexuels et les mécanismes responsables de la détermination du sexe chez les animaux sont issus de stratégies diverses. Cette incroyable diversité se reflète notamment chez les bivalves, où autant les facteurs génétiques qu’environnementaux y jouent un rôle, avec des espèces utilisant divers modes de reproduction, tels que le gonochorisme ou l’hermaphroditisme simultané ou séquentiel. La découverte la plus notable est celle d’un système de déterminisme sexuel unique qui impliquerait les mitochondries. Spécifiquement, un système de transmission sexe-spécifique de l’ADN mitochondrial, connu sous le nom de DUI (« Double Uniparental Inheritance » ou double transmission uniparentale), serait lié au maintien du gonochorisme chez certaines espèces de bivalves. La DUI implique un ADN mitochondrial qui est transmis de façon maternelle (ADNmt F) aux femelles et aux mâles, et l’autre transmis de façon paternelle (ADNmt M) aux mâles seulement. Les ADNmt F et M chez les espèces à DUI sont caractérisés par des traits uniques, comme une modification du gène cox2, ou encore la présence de nouveaux gènes associés à chacun des génomes mitochondriaux (des gènes sexe-spécifiques) qui ont une fonction autre que la production d’énergie contrairement aux autres gènes mitochondriaux typiques. Le lien entre la DUI et la détermination du sexe étant encore flou, trois approches ont été proposées pour aider à le démystifier, chacune des approches constituant un chapitre de cette thèse.
Les deux premiers chapitres se sont concentrés sur des espèces de moules d’eau douce de l’ordre des Unionida, où une corrélation entre gonochorisme et DUI et hermaphroditisme et SMI (« Strictly Maternally Inheritance » ou transmission strictement maternelle) a été décrite. La première approche consistait à produire une analyse transcriptomique comparative entre les gonades mâles et femelles de deux espèces à DUI gonochoriques, Venustaconcha ellipsiformis et Utterbackia peninsularis (famille Unionidae), pour mieux comprendre les mécanismes sous-jacents à la détermination du sexe et à la DUI chez ces bivalves. Cette étude a révélé 12 000 gènes orthologues, avec 2 583 gènes différentiellement exprimés chez les deux espèces, dont les gènes Sry, Dmrt1 et Foxl2 connus pour être des éléments clés dans la détermination du sexe chez les vertébrés et d’autres bivalves. Nos résultats ont aussi été comparés avec d’autres espèces à DUI, notamment avec la palourde marine Ruditapes philippinarum, pour identifier des éléments partagés entre des espèces éloignées qui pourraient être responsables de la régulation de la DUI. Globalement, ces résultats corroborent l'hypothèse selon laquelle un mécanisme d'ubiquitination modifié pourrait être responsable de la rétention de l'ADNmt paternel chez les bivalves mâles. Les analyses ont aussi révélé que la méthylation de l'ADN pourrait être impliquée dans la régulation de la DUI.
Une deuxième analyse transcriptomique comparative a été réalisée afin de discerner les mécanismes sous-jacents à la détermination du sexe et à la DUI, mais cette fois-ci entre l’espèce à DUI gonochorique U. peninsularis et l’espèce proche parente à SMI hermaphrodite U. imbecillis. Cette étude a permis de supporter l’hypothèse d’une implication des mécanismes d’ubiquitination et de méthylation dans la régulation de la DUI, ainsi que de confirmer un rôle des gènes conservés liés à la détermination du sexe également chez les bivalves hermaphrodites. Nos résultats ont également révélé de nouveaux gènes candidats ayant des rôles potentiels dans la DUI, y compris des nucléases et des facteurs impliqués dans l’autophagie / mitophagie.
Finalement, afin d’identifier des éléments génétiques mitochondriaux qui pourraient faire partie des mécanismes sous-jacents à la DUI et la détermination du sexe chez les bivalves, nous avons séquencé les ADNmt F et M complets de deux nouvelles espèces à DUI de deux familles de l’ordre des Venerida, Scrobicularia plana (famille Semelidae) et Limecola balthica (famille Tellinidae). En effet, la description complète des ADNmt chez les espèces à DUI a été effectuée chez plusieurs espèces de moules d’eau douce (ordre Unionoida), mais peu d’espèces l’ont été pour les ordres Mytilida et Venerida. Ces études sont essentielles pour retracer des signatures génétiques mitochondriales partagées par différentes espèces à DUI.
Nos résultats ont révélé les plus grosses différences de taille (>10kb) et de divergence nucléotidique (jusqu’à 50% de divergence) entre les ADNmt M et F, parmi toutes les espèces à DUI. Ces différences de taille sont principalement dues à une immense insertion (>3.5kb) dans la séquence du gène cox2 du génome mitochondrial M, chez nos deux espèces, un trait précédemment décrit chez les moules d’eau douce. Le gène cox2 des mâles de S. plana est la plus longue séquence à travers le règne animal. Une autre fonctionnalité importante portés par les ADNmt F et M est la présence de nouveaux gènes spécifiques au sexe, comme reportée chez toutes les autres espèces à DUI jsuqu’à maintenant. Les résultats combinés de cette thèse soutiennent le partage de plusieurs éléments génétiques clés entre les espèces à DUI. De plus, un parallèle avec le système CMS (« Cytoplasmic Male Sterility » ou stérilité cytoplasmique mâle) chez les plantes, les seuls autres organismes possédant un déterminisme sexuel qui implique les mitochondries, est proposé pour expliquer le rôle de l’ADNmt dans la détermination du sexe chez les espèces de bivalves à DUI. / Sexual systems and sex determining mechanisms described among animals are extraordinarily
diverses. This amazing diversity is present in bivalves where both environment and genetic factors
occur, leading to, among others, gonochoric and simultaneous or sequential hermaphroditic
species. The most impressive discovery is a sex-determining system that would involve
mitochondria. Specifically, a unique mitochondrial DNA inheritance system, known as Doubly
Uniparental Inheritance (DUI), would be related to the maintenance of gonochorism in some
bivalve species. DUI involves two mitochondrial DNA lineages, one that is maternally transmitted
(F mtDNA) to females and males, and the other that is transmitted paternally (M mtDNA) to males
only. The F and M mtDNAs, in DUI species, are characterized by unique traits, such as a
modification of the cox2 gene, or the presence of new genes associated with each of the
mitochondrial genomes (sex-specific genes) that have a function other than energy production,
unlike other typical mitochondrial genes. Since the link between DUI and sex determination is still
unclear, three approaches have been proposed to help demystify it, with each of the approaches
constituting a chapter of this thesis.
The first two chapters focused on freshwater mussel species of the order Unionida, where
a correlation between gonochorism and DUI and hermaphroditism and SMI (Strictly Maternally
Inheritance) was described. The first approach was to produce a comparative transcriptomic
analysis between the male and female gonads of two gonochoric DUI species; Venustaconcha
ellipsiformis and Utterbackia peninsularis (Unionidae family), to better understand the
mechanisms underlying sex determination and DUI in these bivalves. This study revealed 12,000
orthologous genes, with 2 583 genes differentially expressed in both species, including Sry, Dmrt1,
and Foxl2 known to be key sex-determining genes in vertebrates and other bivalve species. Our
results were also compared with other DUI species, including the marine clam Ruditapes
philippinarum, to identify shared elements between distant species that may be responsible for DUI
regulation. Overall, these results support the hypothesis that a modified ubiquitination mechanism
may be responsible for the retention of paternal mtDNA in male bivalves. The analyzes also
revealed that DNA methylation could be involved in DUI regulation.
7
A second comparative transcriptomic analysis was performed to discern the mechanisms
underlying sex determination and DUI between the gonochoric DUI species, U. peninsularis, and
the closely related SMI hermaphroditic species, U. imbecillis. This study supported the hypothesis
of an involvement of ubiquitination and methylation mechanisms in DUI regulation, as well as
confirmed a role of conserved genes related to sex determination in hermaphroditic bivalves. Our
results also revealed novel candidate genes with potential roles in DUI, including nucleases and
factors involved in autophagy / mitophagy mechanisms.
Finally, to identify mitochondrial genetic elements that could be part of the mechanisms
underlying DUI and sex determination in bivalves, we sequenced the complete F and M mtDNAs
of two new DUI species, from two families of the order Venerida; Scrobicularia plana (Semelidae
family) and Limecola balthica (Tellinidae family). The complete description of mtDNAs in DUI
species has been carried out for several species of freshwater mussels (Unionoida order), but very
few species have been described for the orders Mytilida and Venerida. Such studies are essential
for tracing mitochondrial genetic signatures shared by different DUI species.
Our results revealed the largest differences in size (>10kb) and nucleotide divergence (up
to 50% divergence) between M and F mtDNAs, among all DUI species. These differences in size
are mainly due to a huge insertion (> 3.5kb) in the cox2 gene of the M mtDNA from both species,
a trait previously described in freshwater mussels. The cox2 gene in S. plana males represents the
longest cox2 sequence across the animal kingdom. Another important feature of F and M mtDNAs
is the presence of new sex-specific genes, as reported in all other DUI species so far. The combined
results of this thesis support the sharing of several key genetic elements among DUI species. In
addition, a parallel with the Cytoplasmic Male Sterility (CMS) system in plants, the only other
organisms with a sex determination system that involves mitochondria, is proposed to explain the
role of mtDNA in sex determination in DUI bivalve species.
|
13 |
Ultraviolet Light-Induced Regulation of Transcription and Translation, COX-2 Expression and Noncanonical NF-κB ActivationCarpenter, Oliver L. January 2013 (has links)
No description available.
|
Page generated in 0.0521 seconds