• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Les adaptations du muscle squelettique à une surnutrition expérimentale / Skeletal muscle adaptations to a experimental overfeeding

Seyssel, Kévin 02 December 2015 (has links)
Nous avons étudié les mécanismes adaptatifs induits par une surnutrition hyperlipidique (+757 kcal/j) de 56 jours sur le métabolisme énergétique et le muscle squelettique chez des sujets sains. En parallèle, nous avons étudié les mécanismes adaptatifs induits par une surnutrition en fructose de 7 jours sur le métabolisme énergétique et le muscle squelettique chez des sujets apparentés diabétiques de type 2 et nous avons réalisé des études in vitro sur myotubes humains afin d'identifier le médiateur contribuant aux effets du fructose. Ces deux surnutritions contribuent à augmenter le poids corporel. Ces modifications sont accompagnées par l'oxydation préférentielle des glucides au détriment des lipides. La surnutrition hyperlipidique induit, au niveau musculaire, une diminution de l'expression de PDK4 qui pourrait être la conséquence de la diminution de la concentration en NAD+ associée à la baisse de l'activité de SIRT1 comme supportée par l'hyperacétylation de PGC1alpha. Bien que l'activation de la voie SIRT1/PGC1alpha semble réduite, la surnutrition hyperlipidique est associée à une augmentation de l'expression des gènes liés à la mitochondrie. La surnutrition riche en fructose induit quant à elle, au niveau musculaire, une baisse de l'expression de nombreux gènes liés à l'oxydation des lipides et à la mitochondrie comme CPT1 et MLYCD. Les études in vitro suggèrent que le fructose agit de manière indirecte sur le muscle squelettique. Ce travail de thèse met en lumière les conséquences d'une balance énergétique positive induite par la surconsommation de lipides ou de fructose sur le métabolisme énergétique et l'expression génique du muscle squelettique / We studied the effects of a high-fat overfeeding (+757 kcal/d) during 56 days on energy metabolism and skeletal muscle of healthy subjects. ln parallel, we studied the effects of high fructose overfeeding during 7 days on energy metabolism and skeletal muscle of first-degree relatives of type 2 diabetic patients and we performed in vitro studies with human myotubes to identify the mediator contributing to the fructose effects. High-fat and high-fructose overfeeding both contribute to increase body. These changes are associated with a preferential oxidation of carbohydrates instead of lipid. High-fat overfeeding induces in skeletal muscle, a decrease in PDK4 expression that could be the consequences of decreased NAD+ concentration associated with a decreased SlRT1 activity as supported by the hyperacetylation of PGC1alpha. Although this reduction of the SlRT1/PGC-1alpha pathway appears, the high-fat overfeeding is associated with increased mitochondrial gene expression. The high-fructose overfeeding induces in skeletal muscle a decrease in many genes expression related to lipid oxidation and mitochondria as CPT1 and MLYCD. ln vitro experiments suggest an indirect action of fructose in skeletal muscle. This thesis highlights the consequences of a positive energy balance induced by over- consumption of lipid or fructose, which we can find in the general population, on energy metabolism and skeletal muscle gene expression
2

Estudio de los mecanismos de inhibición de la actividad carnitina palmitoiltransferasa I

Bentebibel, Assia 13 February 2009 (has links)
La obesidad y la diabetes tipo 2 son patologias en las cuales se ha demostrado una desregulación del metabolismo de ácidos grasos. Una acumulación de lípidos en otros tejidos distintos del tejido adiposo, entre los que sobresalen el músculo, páncreas e hígado conduce a la aparición de la resistencia a la insulina en el músculo, una secreción incontrolada de insulina en el páncreas y al desarollo de una esteatosis hepática. Estas enfermedades apuntan a la importancia del metabolismo de los ácidos grasos.Los ácidos grasos se oxidan mayoritariamente en mitocondrias y peroxisomas y este paso está facilitado por las carnitina acitransferasas. En esta tesis estudiaremos un miembro de esta familia, la carnitina palmitoiltransferasa 1 (CPT1). CPT1 es un enzima que facilita el transporte de ácidos grasos de cadena larga a la matriz mitocondrial, donde serán oxidados. Este proceso esta regulado por malonil-CoA, el inhibidor fisiológico de CPT1. El objetivo de este trabajo es identificar mediante análisis bioinformáticos y cinéticos la ubicación del malonil-CoA en las isoformas hepática y muscular de CPT1 (CPT1A y CPT1B). Con un buen modelo malonil-CoA/CPT1 se podrían diseñar fármacos para regular la β-oxidación de algunos ácidos grasos como palmitato y oleato, ya que sus niveles están estrechamente relacionados con patologías como la obesidad y la diabetes tipo 2.Aún no se ha resuelto el cristal de CPT1, posiblemente por ser una proteína integral de membrana. Por ello hemos recurrido a una aproximación bioinformática y análisis de "Docking" in silico, como método predictivo de las posibles interacciones de malonil-CoA con CPT1. El modelo 3D obtenido presenta dos sitios de unión de malonil-CoA, situados de forma opuesta en el canal catalítico, sitio A y sitio O. La validez de este modelo de "Docking" ha sido confirmada mediante estudio cinético de competición del inhibidor con los sustratos de CPT1A, carnitina y palmitoil-CoA y también mediante análisis de mutantes de CPT1A. Malonil-CoA es un inhibidor competitivo de CPT1 respecto al sustrato palmitoil-CoA y es un inhibidor mixto lineal de CPT1A respecto a la carnitina. Estos datos están de acuerdo con el modelo 3D propuesto de interacción de malonil-CoA, carnitina y palmitoil-CoA.En este trabajo proponemos por vez primera un modelo 3D de la isoforma muscular, CPT1B que ha resultado muy similar, como era de esperar, al de la isoforma hepática. Mediante estudios de mutagénesis dirigida hemos confirmado la ubicación de los residuos catalíticos y de un residuo implicado en la sensibilidad a malonil-CoA.Diversos estudios presentan al enzima CPT1 como potencial diana para el tratamiento de la obesidad y la diabetes tipo 2. También el enzima ácido graso sintasa (FAS) se ha propuesto como diana para el tratamiento de la obesidad. En este trabajo hemos demostrado que C75, una lactona ciclica de origen sintético, no solo actúa sobre FAS sino también sobre CPT1 y hemos aportado nueva información sobre el mecanismo de acción de esta molécula sobre la actividad CPT1 in vitro e in vivo. Los análisis por MALDI-TOF y HPLC-MS/MS y los estudios cinéticos y estructurales confirman que C75 es transformado in vitro e in vivo en su derivado CoA, el C75-CoA y bajo esta forma actúa como un inhibidor potente y reversible de CPT1. Además C75-CoA es un inhibidor competitivo respecto al sustrato palmitoil-CoA y es un inhibidor competitivo mixto respecto al sustrato carnitina. Los resultados del análisis de Docking de una molécula de C75-CoA en CPT1A confirman los resultados cinéticos obtenidos. Este estudio abre las puertas para el diseño de nuevos fármacos basados en la molécula de C75. / Carnitine palmitoyltransferase 1 (CPT1) is an ezyme that facilitates the transport of long chain fatty acids into the mitochondrial matrix for their oxidation. This process is regulated by malonyl-CoA, the physiological inhibitor of CPT1. The aim of this work is to identify by biocomputing and kinetic analyses the location of malonyl-CoA in the hepatic and muscular isoforms of CPT1 (CPT1A and CPT1B). The use of a good structural model of malonyl-CoA/CPT1 interaction might be useful for the design of drugs to control the regulation of β-oxidation of some fatty acids as palmitate and oleate, since their levels are closly linked whith pathologies such as obesity and diabetes type 2.Herein we propose a 3D model for CPT1 that presents two different binding sites for malonyl-CoA, situated in opposite sides in the catalytic channel, as shown by molecular Docking analisis. The validity of this Docking has been confirmed by competition kinetics studies of malonyl-CoA with both CPT1A substrates, carnitine and palmitoyl-CoA and also by analysis of specific CPT1A mutants. Malonil-CoA is a competitive inhibitor and a mixed linear inhibitor of CPT1 with regard to palmitoyl-CoA and carnitine respectively. These data are in accordance with the 3D model proposed for the interactions of these molecules with CPT1.Several studies reported that CPT1 is a potential target for the treatment of obesity and type 2 diabetes. Here we show that C75, a synthetic inhibitor of the fatty acid synthase (FAS) not only acts on this enzyme but also on CPT1. We have given new information about the mechanism of action of C75 on CPT1 activity in vitro and in vivo. MALDI-TOF and HPLC-MS/MS analyses and kinetic and structural studies confirm that C75 is transformed in vitro and in vivo in its CoA derivative, C75-CoA and under this form acts as a powerful and reversible inhibitor of CPT1. Also, C75-CoA is a competitive inhibitor and a competitive mixed inhibitor with regard to palmitoyl-CoA and carnitine respectively. The Docking analysis of C75-CoA in CPT1A confirm the kinetic results obtained. This study gives more informations for the design of new medicines based on the C75 molecule.

Page generated in 0.0593 seconds