• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The application of fracture mechanics to grey cast iron pipework

Conlin, Roger Michael January 1991 (has links)
No description available.
2

Numerical modelling of reinforced concrete structure under monotonic and earthquake-like dynamic loading

Chuang, Tsai-Fu January 2001 (has links)
No description available.
3

Numerical Failure Pressure Prediction of Crack-in-Corrosion Defects in Natural Gas Transmission Pipelines

Bedairi, Badr 20 August 2010 (has links)
The aim of this study was to use the finite element method to model crack, corrosion, and Crack-in-Corrosion defects in a pipeline. The pipe material under investigation for this study was API 5L X60, 508 mm diameter with a wall thickness of 5.7 mm. The pipe material was evaluated using Tensile, Charpy, and J testing in order to model the defects and to establish the numerical failure criteria. Corrosion defects were modeled as flat-bottomed grooves. The collapse pressure was predicted when the deepest point in the bottom of the defect reached a critical stress. Based on this criterion, the FE corrosion failure pressure predictions were conservative compared to the experimental failure pressures, conducted by Hosseini [9], with an average error of 10.13%. For crack modeling, the failure criteria were established considering the plastic collapse limit and the fracture limit. Both the Von Mises stress in the crack ligament and the J-integral values around the crack were monitored to predict the failure pressure of the model. The crack modeling was done based on two approaches, the uniform depth profile and the semi-elliptical profile. The crack with uniform depth profile was done because the uniform shape is the logical equivalent shape for a colony of cracks. The crack with the semi-elliptical profile was done to have a less conservative results and because the experiments were done with semi-elliptical cracks. The FE crack modeling results were conservative compared to the experimental collapse pressure with an average error of 19.64% for the uniform depth profile and 5.35% for the semi-elliptical profile. In crack-in-corrosion (CIC) defect modeling, the crack was modeled with uniform depth because it was very difficult to model the semi-elliptical crack profile when the crack defect is coincident with a corrosion defect. The results were conservative compared to the experimental results with an average error of 22.18%. In general, the FE modeling provides the least conservative failure pressure prediction over the existing analytical solutions for pipe with longitudinal corrosion, crack, and CIC defects.
4

Numerical Failure Pressure Prediction of Crack-in-Corrosion Defects in Natural Gas Transmission Pipelines

Bedairi, Badr 20 August 2010 (has links)
The aim of this study was to use the finite element method to model crack, corrosion, and Crack-in-Corrosion defects in a pipeline. The pipe material under investigation for this study was API 5L X60, 508 mm diameter with a wall thickness of 5.7 mm. The pipe material was evaluated using Tensile, Charpy, and J testing in order to model the defects and to establish the numerical failure criteria. Corrosion defects were modeled as flat-bottomed grooves. The collapse pressure was predicted when the deepest point in the bottom of the defect reached a critical stress. Based on this criterion, the FE corrosion failure pressure predictions were conservative compared to the experimental failure pressures, conducted by Hosseini [9], with an average error of 10.13%. For crack modeling, the failure criteria were established considering the plastic collapse limit and the fracture limit. Both the Von Mises stress in the crack ligament and the J-integral values around the crack were monitored to predict the failure pressure of the model. The crack modeling was done based on two approaches, the uniform depth profile and the semi-elliptical profile. The crack with uniform depth profile was done because the uniform shape is the logical equivalent shape for a colony of cracks. The crack with the semi-elliptical profile was done to have a less conservative results and because the experiments were done with semi-elliptical cracks. The FE crack modeling results were conservative compared to the experimental collapse pressure with an average error of 19.64% for the uniform depth profile and 5.35% for the semi-elliptical profile. In crack-in-corrosion (CIC) defect modeling, the crack was modeled with uniform depth because it was very difficult to model the semi-elliptical crack profile when the crack defect is coincident with a corrosion defect. The results were conservative compared to the experimental results with an average error of 22.18%. In general, the FE modeling provides the least conservative failure pressure prediction over the existing analytical solutions for pipe with longitudinal corrosion, crack, and CIC defects.

Page generated in 0.1331 seconds