Spelling suggestions: "subject:"track tipo plasticity""
1 |
The application of distributed dislocations to the modelling of plane plastic flowBlomerus, P. M. January 1998 (has links)
No description available.
|
2 |
Finite Element Modeling of Crack Tip Plastic Anisotropy with Application to Small Fatigue Cracks and Textured Aluminum AlloysPotirniche, Gabriel Petru 02 August 2003 (has links)
For the characterization of crack advance in mechanical components and specimens under monotonic and fatigue loading, many engineering approaches use the assumption that the plastic deformation at the crack tip is isotropic. There are situations when this assumption is not correct, and the modeling efforts require additional correction factors that account for this simplification. The goal of this work is to study two cases where the plastic anisotropy at the crack tip is predominant and influences the magnitude crack-tip parameters, which in turn determine the amount of crack advance under applied loading. At the microstructural level, the small crack issue it is a long-standing problem in the fatigue community. Most of the small crack models consider that the plastic deformation at the crack tip is isotropic. The proposed approached for analyzing small crack growth is to perform finite element simulation of small cracks growing in a material that is assigned single crystal plastic properties. The nature of the plastic deformation of the material at the crack tip in the intra-granular regions could be accurately described and used for modeling small crack growth. By employing finite element analyses for stationary and growing cracks, the main characteristics of the plastic deformation at the crack tip, such as plastic zone sizes and shapes, crack-tip opening displacements, crack-tip opening stresses, are quantified and crack growth rates are determined. Ultimately, by using this crystal plasticity model calibrated for different microstructures, important time and financial resources for real experiments for the study of small cracks can be spared by employing finite element simulations. At macroscale, it is widely known that the manufacturing processes for aluminum alloys results in highly anisotropic microstructures, known as textures. The plastic behavior of these types of materials is far from isotropic and even the use of classical anisotropic yield criteria, such as that on Hill (Hill, 1950), is far from producing accurate results for describing the plastic deformation. Two of these anisotropic yield functions are implemented into finite element code ANSYS and stationary cracks are studied in a wide variety of textures. Significant variations of the plastic deformation at the crack due to the anisotropy are revealed.
|
3 |
Experimental Characterization of Influence of Gaseous Hydrogen on Fatigue Crack Propagation and Crack Tip Plasticity in Commercially Pure Iron / Caractérisation expérimentale de l'influence de l'hydrogène gazeux sur la propagation et la plasticité en pointe de fissure de fatigue dans le fer ARMCOShinko, Tomoki 26 March 2019 (has links)
L’objectif de cette étude est de caractériser expérimentalement la propagation de fissures de fatigue affectée par l’hydrogène (Hydrogen-Affected Fatigue Crack Growth, HAFCG) dans diverses conditions et de clarifier le mécanisme impliqué en se concentrant sur la plasticité en pointe de fissures. Pour cet objectif, dans une première étape, l’influence de l’hydrogène sur la déformation plastique a été étudiée à l’aide d’essais de traction effectués sur un fer commercialement pur, le fer Armco, sous hydrogène gazeux. Les résultats ont montré que l’effet de l’hydrogène sur la propagation des fissures après apparition de la striction est plus important que celui sur la déformation plastique uniforme. Le HAFCG a ensuite été étudié au moyen d’essais de fissuration pour diverses valeurs de l’amplitude de facteur d’intensité de contrainte ΔK, de pression d’hydrogène (PH2 = 3,5 et 35 MPa) et de fréquence de chargement (f = 0,02 - 20 Hz). Il a été révélé que les vitesses de propagation dans un régime à ΔK élevé étaient fortement augmentées par l'hydrogène, jusqu'à 50 fois plus élevé que celles dans l'air. Le mode de rupture est une rupture intergranulaire fragile dans un régime de propagation à faible ΔK, alors qu’on observe une rupture transgranulaire de type quasi-clivage dans un régime à ΔK élevé. La valeur de ΔKtr (valeur de ΔK déclenchant l'augmentation de la vitesse de fissuration) diminue en augmentant la pression PH2. En outre, la vitesse augmente en diminuant la fréquence f. Une fois que la fréquence devient inférieure à une valeur critique, la vitesse de fissuration diminue considérablement jusqu'au même niveau que celle sous azote. La plasticité en pointe de fissure a été analysée à plusieurs échelles par microscopie optique, par mesure de déplacement hors plan et par microscopie électronique à balayage par transmission de la structure de dislocation située immédiatement sous la surface de rupture (FIB/STEM). Aucune modification claire de la zone plastique monotone en pointe de fissure sous hydrogène n’a été observée, alors qu’une réduction drastique de la plasticité cyclique associée à l'augmentation de la vitesse a été identifiée. Sur la base des observations expérimentales, des modèles de mécanisme de fissuration intergranulaire induit par l'hydrogène impliquant la coalescence des micro-vides le long de joints de grain et de mécanisme de fissuration transgranulaire induit par l'hydrogène impliquant un clivage cyclique dû à la réduction de la plasticité en pointe de fissure ont été proposés. Trois critères caractéristiques de fissuration assistée par hydrogène (ΔKtr, gradient d'hydrogène (PH2 × f)1/2 et limite supérieure de vitesse de fissuration) ont été établis. Ces critères devraient être utiles pour améliorer la conception en fatigue et la fiabilité des équipements exposés à l'hydrogène gazeux. / The objective of this study is to experimentally characterize Hydrogen-Affected Fatigue Crack Growth (HAFCG) behavior under various conditions and clarify the mechanism by focusing on crack tip plasticity. For this objective, as a first step, the influence of hydrogen on plastic deformation has been investigated by means of tensile tests in a commercially pure iron, Armco iron, under gaseous hydrogen. The results of the tests pointed out that the hydrogen effect on crack propagation is more important than that on uniform plastic deformation. Then, the HAFCG was investigated by means of FCG tests under various conditions of crack tip stress intensity ΔK, hydrogen gas pressure (PH2 = 3.5 and 35 MPa) and loading frequency (f = 0.02 – 20 Hz). It has been revealed that the FCGRs in a high ΔK regime were highly enhanced by hydrogen up to 50 times higher than the one in air. The fracture mode was a brittle intergranular fracture in a low ΔK regime, while it is a brittle transgranular quasi-cleavage one in a high ΔK regime. The value of ΔKtr (value of ΔK triggering the FCGR enhancement) decreases by increasing the pressure PH2. Besides, the FCGR enhancement increases by decreasing the frequency f. Once f becomes lower than a critical value, the HAFCG rate significantly decreases down to the same level as in nitrogen., The crack tip plasticity was analyzed in a multiscale approach by means of optical microscopy, out-of-plane displacement measurement, and scanning transmission electron microscopy of dislocation structure immediately beneath the fracture surface (FIB/STEM). As a result, no clear modification of monotonic crack tip plasticity by hydrogen was observed, while a drastic reduction of cyclic crack tip plasticity associated with the FCGR enhancement was identified. Based on the experimental evidences, models of the hydrogen-induced intergranular FCG mechanism involving microvoid coalescence along grain boundary and the hydrogen-induced transgranular FCG mechanism involving cyclic cleavage due to crack tip plasticity reduction have been proposed. Three characteristic criteria of HAFCG (ΔKtr, hydrogen gradient (PH2 × f)1/2 and upper limit of FCGR) have been established. These criteria are expected to be useful for improving fatigue design and reliability of hydrogen-related equipment.
|
4 |
Nonlinear dynamics of cracked structures for non-destructive evaluationHiwarkar, Vikrant January 2010 (has links)
The power plant and aerospace industries have been facing a huge loss, due to structural failure. The structural failure occurs due to the presence of the crack in it. Hence, it becomes necessary to monitor the structural health under operating condition. Most of the techniques, for structural health monitoring are used for a specific purpose. Some of these techniques require structure dismantling, which is very much expensive and time consuming. So the vibration based structural health monitoring is advantageous, compared to other techniques. Most of the vibration based Structural Health Monitoring (SHM) approaches, use linear vibration theory. But, these linear vibration based procedures, have inherently low sensitivity to crack. Since crack introduces nonlinearities in the system, their merits in damage detection need to be investigated for SHM. In this thesis, the problem is focused on studying nonlinear dynamics of cracked structures for Structural Health Monitoring. For this, simulations and experiments are performed. The new procedure for the simulation is developed using Matlab-Simulink. It uses the numerical approximation for dynamic compliance operators and a nonlinear model of cracks contact faces interaction to study the dynamic behaviour of the cracked bar. Furthermore, the finite element model of the cracked cantilever bar with crack- tip plasticity is developed and the dynamic behaviour of the elasto-plastic bar is studied. Additionally, numerous experiments are performed to study the dynamics of cantilever bar with the fatigue crack in it. The results from Matlab-Simulink simulation shows the distribution of higher harmonics generated along the bar length, as a function of distance from the crack. In finite element simulation, comparison is made between the resonance frequency of cracked cantilever bar with and without crack-tip plasticity. It is found that, there is decrease in resonance frequency of the cracked bar with cracked tip plasticity, when compared with the resonance frequency of cracked bar without crack-tip plasticity. This reduction in resonance frequency is due to the crack-induced plasticity near the crack tip which affects the overall stiffness of bar. In experiments, the response is measured at four different points on the cracked cantilever bar at a given resonant frequency of excitation at lower and higher vibration amplitude. For lower vibration amplitude, it is found that the response obtained near the vicinity of the crack shows the presence of higher harmonics of resonant frequency, which disappears in the response obtained far away from the crack. For higher vibration amplitude, it is found that the response obtained near the vicinity of the crack shows the presence of higher harmonics along with the low frequency component. This low frequency component causes modulation, which leads to the generation of side band frequencies near the resonant frequency. The occurrence of low frequency component and side band frequencies is due to the vibro-impact behaviour of crack. The amplitude of these side band frequencies and higher harmonics are reduced in the response obtained far away from the crack. This indicates that crack-induced nonlinearity has a localized effect on the dynamics of bar. It is also observed that the magnitude of low frequency component is proportional to the magnitude of resonant frequency of excitation. This indicates that crack behaves like a signal modulator, detector of low frequency component and amplifier as the magnitude of low frequency component is proportional to the magnitude of resonant frequency excitation. From the Matlab-Simulink simulation and experimental results, it is concluded that crackinduced nonlinearity affects the dynamic behaviour of the cracked bar significantly, which will be effective in structural health monitoring. Keywords: vibro-impact, crack, dynamic compliance, harmonics, modulator, detector, amplifier, crack-tip plasticity, resonance frequency, structural health monitoring.
|
5 |
Popis napjatosti a deformace na čele trhlin zatížených ve smykových zátěžných módech / Description of Stress and Strain States at the Front of Cracks Loaded by Shear ModesŽák, Stanislav January 2014 (has links)
The main goal of this work is the comparison of the size of the plastic zone at the crack tip for two analysis methods: an analytical linear method and an elastic-plastic analysis employing the Finite Element method (ANSYS software). All calculations were made for a crack loaded under pure shear modes. These types of loading are not sufficiently described in the literature. The first part of this work introduces the problem with the crack tip plastic zone using both linear and nonlinear fracture parameters. The second part is dedicated to the construction of the Finite Element model in the ANSYS software. The geometry of the samples and the loading levels were chosen to match an existing experimental test of the impact of shear modes on the crack behavior. In the third part of this thesis, the plastic zone radii for pure shear modes II and III are estimated using several methods and the results are compared. In the last part of this work, the same procedure as in the previous part is applied on a mixed-mode II+III loading. A result of this thesis is the assessment of the application limits of the linear analysis method used to estimate the size of the plastic zone at the crack tip for a specific geometry and material model.
|
6 |
Etude de l'endommagement et du comportement en fatigue des aciers à outils / Damage and behavior assessments of the tool steelsBaccar, Manel 20 March 2014 (has links)
Les outillages de mise en forme à chaud sont soumis à des sollicitations thermomécaniques transitoires. Ils sont donc confrontés à la fissuration par fatigue. Le but de ce travail est d'étudier le comportement et la durée de vie en fatigue des aciers d'outillage, notamment leurs résistances à la propagation de fissure. Dans un premier temps, les chargements thermiques imposés aux outillages de fonderie sous pression de magnésium et d'emboutissage à chaud ont été évalués. Ensuite, le comportement et la durée de vie de l'acier à haute conductivité thermique HDC1 ont été étudiés et comparés à l'acier AISI H11 (acier de référence) en fonction de la température. L'acier HDC1 présente un adoucissement cyclique stable à 20°C et 300°C. Par contre, l'intensité d'adoucissement est plus importante à hautes températures. La durée de vie a été étudiée en utilisant les lois de Manson-Coffin et de Basquin. A hautes températures, l'oxydation devient un mécanisme d'endommagement primordial pour l'acier HDC1 et provoque des durées de vie plus courtes que celles observées sur l'acier AISI H11. La résistance à la propagation de fissure de fatigue a été déterminée dans des aciers à la température ambiante par le biais de critères : l'amplitude de facteur d'intensité de contrainte (∆K) et l'amplitude d'ouverture en pointe de fissure (∆CTOD). La méthode de corrélation d'images a permis de mesurer (∆COD) et d'évaluer (∆CTOD). L'ensemble de ces résultats a permis de mettre en évidence l'effet de fermeture de fissure et le comportement plastique en pointe de fissure. ∆CTOD présente un bon critère pour rationaliser la propagation de fissure dans les aciers étudiés.Enfin, la simulation numérique de la propagation de fissure en fatigue a été menée dans l'acier AISI H11 à 600°C par la méthode de relâchement des nœuds en éléments finis. L'effet des modèles de comportement monotone (élastoplastique) et cyclique (élastoviscoplastique) a été étudié sur le calcul de l'ouverture de fissure et la plasticité en pointe de fissure. L'influence du modèle de comportement est faible sur le calcul de l'amplitude d'ouverture de fissure ∆COD, du fait d'une plasticité confinée en pointe de fissure. Alors que, le modèle de comportement cyclique est mieux adapté pour décrire la plasticité en pointe de fissure. / Hot metal forming tools are subjected to cyclic thermomechanical loading and damage by complex fatigue/wear/oxidation interactions. Thermal solicitations were measured on high pressure die casting and hot stamping processes. Based on thermal measurements, the isothermal fatigue behaviour and lifetime of a new high conductivity steel HDC1 were investigated at different temperatures and strain amplitude then compared to AISI H11 steel. As AISI H11, continue cyclic softening was observed in HDC1 at all temperatures. The Manson-Coffin and Basquin laws were used for life prediction models under different temperatures. It was observed that the fatigue/oxidation interaction was a principal damage mechanism of the HDC1 steel at high temperature. Fatigue crack propagation in steels was investigated at room temperature in SENT specimens. A digital image correlation technique was used to evaluate crack opening (∆COD) and crack tip opening displacement (∆CTOD) ranges. Crack growth rate were investigated using ∆K (Paris law) and ∆CTOD criteria. It was observed that the cyclic crack tip plasticity control the crack propagation resistance. Crack closure could be evaluated by ∆CTOD.Finite element method by debond technique was used to model the crack propagation of AISI H11 at 600°C using both monotonic elasto-plastic (EP) and cyclic elasto-viscoplastic (EVP) constitutive laws materials. The comparison of ∆COD calculated and measured had shown that monotonic EP and cyclic EVP had no significant effect on the ∆COD, mainly due to the small-scale yielding conditions. It is however observed that the cyclic constitutive law was the best suitable model for the crack tip plasticity effect.
|
Page generated in 0.0976 seconds