• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 45
  • 28
  • 21
  • 18
  • 17
  • 17
  • 16
  • 12
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Comportamento termoidraulico de vareta aquecida eletricamente durante transitorio de fluxo critico de calor

LIMA, RITA de C.F. de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:42:40Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:16Z (GMT). No. of bitstreams: 1 05031.pdf: 4962096 bytes, checksum: 39c12c06c0063abb20c1c82005ecef33 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
32

Estudo teórico-experimental da transferência de calor e do fluxo crítico durante a ebulição convectiva no interior de microcanais / A theoretical and experimental study on flow boiling heat transfer and critical heat flux in microchannels

Cristiano Bigonha Tibiriçá 13 July 2011 (has links)
A pesquisa realizada tratou do estudo da transferência de calor e do fluxo crítico durante a ebulição convectiva no interior de canais de diâmetro reduzidos a partir de dados levantados em bancadas experimentais construídas para esta finalidade. Extensa pesquisa bibliográfica foi efetuada e os principais métodos disponíveis para previsão de coeficiente de transferência de calor, fluxo crítico e mapas de escoamento foram levantados. Os resultados obtidos foram parametricamente analisados e comparados com os métodos da literatura. Pela primeira vez para microcanais, resultados experimentais foram levantados por um mesmo autor em laboratórios distintos buscando verificar a tendência e comportamentos. Tal comparação tem sua importância destacada em face das elevadas discrepâncias observadas na literatura quando resultados de autores distintos, obtidos em condições similares, são comparados. Os resultados levantados foram utilizados na elaboração de modelos que consideram os padrões de escoamento observados em microcanais. A incorporação dos padrões permitiu o desenvolvimento de modelos mecanísticos para coeficiente de transferência de calor, fluxo crítico e critérios para a caracterização da transição entre macro e microcanais baseados na formação do padrão de escoamento estratificado e na simetria do filme líquido no escoamento anular. / This research comprises an experimental and theoretical study on flow boiling heat transfer and critical heat flux inside small diameter tubes based on data obtained in experimental facilities specially designed for this purpose. A broad literature review was carried out and the main methods to predict the heat transfer coefficient, critical heat flux and flow patterns were pointed out. The experimental results were parametrically analyzed and compared against the predictive methods from literature. For the first time, microchannels experimental results obtained by an unique researcher in distinct laboratories were compared and a reasonable agreement was observed. The importance of such a comparison is high-lighted for flow boiling inside microchannels due to the high discrepancies ob-served when results from independent laboratories obtained under similar experimental conditions are compared. Moreover, the experimental results obtained in the present study were used to develop correlations and models for the heat transfer coefficient and heat flux that takes into account the flow patterns observed in microchannels. The heat transfer coefficient and critical heat flux models were developed based on mechanistic approach. In addition, criteria to characterize macro to microchannel transition were proposed based in the occurrence of the stratified flow pattern and the liquid film symmetry under annular flow conditions.
33

Kritické tepelné toky na hladkých a upravených površích / Critical Heat Flux on Smooth and Modified Surfaces

Suk, Ladislav January 2021 (has links)
This thesis deals with the problem of critical heat flux (CHF) on technically smooth and treated surfaces at low pressures. The theoretical part presents the basic concepts of two-phase flow and an analysis of existing work on the influence of the surface on CHF. The main part of the work describes the built experimental apparatus for CHF research at low pressures of 100 -1500 kPa (1-15 bar) with a vertical internally heated annular test section. The internal annuli consists of an outer glass tube with an inner diameter of 14.8 mm and an inner tube made of Inconel ™ 625 / Optimized ZIRLO ™ with an outer diameter of 9.14 mm and a heated length of 380/365 mm. CHF experiments on technically smooth surface were performed at outlet pressures 120 kPa, 200 kPa and 300 kPa, at an inlet temperature of 64, 78 and 91 °C and at mass flux of 400, 500, 600 and 800 kg / m2s. The Inconel tubes were tested in two different surface modifications - abraded and bead blasted. Experiments were performed at mass flows of 400, 500 and 600 kg / m2s. The total number of 122 experimental runs were conducted and the results were compared with other literature experimental data. The maximum increase of CHF on abraded / bead blasted tube was 18.12% / 16.17%. The surface structure was analysed by laser microscopy. The wetting behaviour of the surface structures was measured by the sessile drop method. The elemental analysis of the surface was evaluated using the EDS method.
34

Two-Phase Spray Cooling with HFC-134a and HFO-1234yf for Thermal Management of Automotive Power Electronics using Practical Enhanced Surfaces

Altalidi, Sulaiman Saleh 08 1900 (has links)
The objective of this research was to investigate the performance of two-phase spray cooling with HFC-134a and HFO-1234yf refrigerants using practical enhanced heat transfer surfaces. Results of the study were expected to provide a quantitative spray cooling performance comparison with working fluids representing the current and next-generation mobile air conditioning refrigerants, and demonstrate the feasibility of this approach as an alternative active cooling technology for the thermal management of high heat flux power electronics (i.e., IGBTs) in electric-drive vehicles. Potential benefits of two-phase spray cooling include achieving more efficient and reliable operation, as well as compact and lightweight system design that would lead to cost reduction. The experimental work involved testing of four different enhanced boiling surfaces in comparison to a plain reference surface, using a commercial pressure-atomizing spray nozzle at a range of liquid flow rates for each refrigerant to determine the spray cooling performance with respect to heat transfer coefficient (HTC) and critical heat flux (CHF). The heater surfaces were prepared using dual-stage electroplating, brush coating, sanding, and particle blasting, all featuring "practical" room temperature processes that do not require specialized equipment. Based on the obtained results, HFC-134a provided a better heat transfer performance through higher HTC and CHF values compared to HFO-1234yf at all tested surfaces and flow rates. While majority of the tested surfaces provided comparable HTC and modestly higher CHF values compared to the reference surface, one of the enhanced surfaces offered significant heat transfer enhancement.
35

Investigation of Machine Learning Regression Techniques to Predict Critical Heat Flux

Helmryd Grosfilley, Emil January 2022 (has links)
A unifying model for Critical Heat Flux (CHF) prediction has been elusive for over 60 years. With the release of the data utilized in the making of the 2006 Groeneveld Lookup table (LUT), by far the largest public CHF database available to date, data-driven predictions on a large variable space can be performed. The popularization of machine learning techniques to solve regression problems allows for deeper and more advanced tools when analyzing the data. We compare three different machine learning algorithms to predict the occurrence of CHF in vertical, uniformly heated round tubes. For each selected algorithm (ν-Support vector regression, Gaussian process regression, and Neural network regression), an optimized hyperparameter set is fitted. The best performing algorithm is the Neural network, which achieves a standard deviation of the prediction/measured factor three times lower than the LUT, while the Gaussian process regression and the ν-Support vector regression both lead to two times lower standard deviation. All algorithms significantly outperform the LUT prediction performance. The neural network model and training methodology are designed to prevent overfitting, which is confirmed by data analysis of the predictions. Additionally, a feasibility study of transfer learning and uncertainty quantification is performed, to investigate potential future applications.
36

The Effect Of Colloidal Stability On The Heat Transfer Characteristics Of Nanosilica Dispersed Fluids

Venkataraman, Manoj 01 January 2005 (has links)
Addition of nano particles to cooling fluids has shown marked improvement in the heat transfer capabilities. Nanofluids, liquids that contain dispersed nanoparticles, are an emerging class of fluids that have great potential in many applications. There is a need to understand the fundamental behavior of nano dispersed particles with respect to their agglomeration characteristics and how it relates to the heat transfer capability. Such an understanding is important for the development and commercialization of nanofluids. In this work, the stability of nano particles was studied by measuring the zeta potential of colloidal particles, particle concentration and size. Two different sizes of silica nano particles, 10 nm and 20 nm are used in this investigation at 0.2 vol. % and 0.5 vol. % concentrations. The measurements were made in deionized (DI) water, buffer solutions at various pH, DI water plus HCl acid solution (acidic pH) and DI water plus NaOH solution (basic pH). The stability or instability of silica dispersions in these solutions was related to the zeta potential of colloidal particles and confirmed by particle sizing measurements and independently by TEM observations. Low zeta potentials resulted in agglomeration as expected and the measured particle size was greater. The heat transfer characteristics of stable or unstable silica dispersions using the above solutions were experimentally determined by measuring heat flux as a function of temperature differential between a nichrome wire and the surrounding fluid. These experiments allowed the determination of the critical heat flux (CHF), which was then related to the dispersion characteristics of the nanosilica in various fluids described above. The thickness of the diffuse layer on nano particles was computed and experimentally confirmed in selected conditions for which there was no agglomeration. As the thickness of the diffuse layer decreased due to the increase in salt content or the ionic content, the electrostatic force of repulsion cease to exist and Van der Waal's force of agglomeration prevailed causing the particles to agglomerate affecting the CHF. The 10nm size silica particle dispersions showed better heat transfer characteristics compared to 20nm dispersion. It was also observed that at low zeta potential values, where agglomeration prevailed in the dispersion, the silica nano particles had a tendency to deposit on the nickel chromium wire used in CHF experiments. The thickness of the deposition was measured and the results show that with a very high deposition, CHF is enhanced due to the porosity on the wire. The 10nm size silica particles show higher CHF compared to 20nm silica particles. In addition, for both 10nm and 20nm silica particles, 0.5 vol. % concentration yielded higher heat transfer compared to 0.2 vol. % concentration. It is believed that although CHF is significantly increased with nano silica containing fluids compared to pure fluids, formation of particle clusters in unstable slurries will lead to detrimental long time performance, compared to that with stable silica dispersions.
37

Contribution à l'étude des propriétés thermiques et hydrodynamiques d'un écoulement d'hélium normal (5HeI) diphasique en circulation naturelle pour le refroidissement des aimants supraconducteurs / Contribution to the study of thermal and hydrodynamical properties of HeI two phase natural circulation flow for cooling superconducting magnets

Benkheira, Lahcène 29 June 2007 (has links)
La méthode de refroidissement basée sur le principe thermosiphon présente un grand intérêt en raison de sa simplicité, de sa nature passive et de son coût faible. Elle est adoptée pour le refroidissement à 4,5 K de l’aimant supraconducteur du détecteur de particules CMS auprès du LHC en construction au CERN à Genève. Le travail présenté dans cette thèse étudie expérimentalement les propriétés thermiques et hydrodynamiques d’un écoulement d’He I diphasique en circulation naturelle. Le dispositif expérimental utilisé consiste en une boucle thermosiphon monobranche composée principalement d’un séparateur de phases, d’un tube descendant et d’une section d’essai. Les expériences ont été réalisées en faisant varier plusieurs paramètres tels que le diamètre des sections d’essai (10 mm ou 14 mm) et le flux de chaleur allant jusqu’à l’apparition de la crise d’ébullition. Ces expériences ont permis de déterminer les lois d’évolution des différentes grandeurs caractérisant l’écoulement (le débit massique de circulation, le débit massique vapeur, le titre massique, le coefficient de friction et le coefficient d’échange thermique) en fonction de la densité du flux de chaleur appliquée. Au regard des résultats obtenus, nous discutons la validité des différents modèles classiques existants dans la littérature. Nous montrons que le modèle homogène est le modèle le mieux adapté pour prédire les propriétés hydrodynamiques de ce type d’écoulement dans la gamme de titre massique 0?x?30%. De plus, nous proposons deux modèles pour la prédiction du coefficient de transfert de chaleur diphasique et la densité de flux de chaleur critique. Le premier considère que les effets de la convection forcée et de l’ébullition nucléée agissent simultanément et contribuent au transfert de chaleur. Le deuxième corrèle la densité de flux de chaleur critique mesurée en fonction du rapport altitude sur diamètre / The method of cooling based on the thermosiphon principle is of great interest because of its simplicity, its passivity and its low cost. It is adopted to cool down to 4,5 K the superconducting magnet of the CMS particles detector of the Large Hadron Collider (LHC) experiment under construction at CERN, Geneva. This work studies heat and mass transfer characteristics of two phase He I in a natural circulation loop. The experimental set-up consists of a thermosiphon single branch loop mainly composed of a phase separator, a downward tube, and a test section. The experiments were conducted with varying several parameters such as the diameter of the test section (10 mm or 14 mm) and the applied heat flux up to the appearance of the boiling crisis. These experiments have permitted to determine the laws of evolution of the various parameters characterizing the flow (circulation mass flow rate, vapour mass flow rate, vapour quality, friction coefficient, two phase heat transfer coefficient and the critical heat flux) as a function of the applied heat flux. On the base of the obtained results, we discuss the validity of the various existing models in the literature. We show that the homogeneous model is the best model to predict the hydrodynamical properties of this type of flow in the vapour quality range 0?x?30%. Moreover, we propose two models for the prediction of the two phase heat transfer coefficient and the density of the critical heat flux. The first one considers that the effects of the forced convection and nucleate boiling act simultaneously and contribute to heat transfer. The second one correlates the measured critical heat flux density with the ratio altitude to diameter
38

Výpočetní a experimentální analýzy jaderných paliv nové generace / Experimental and calculational analyses of new generation nuclear fuels

Tioka, Jakub January 2021 (has links)
The search for Accident tolerant fuels (ATF) which is the first part of this thesis is currently one of the most actual topics in the field of nuclear fuels. These fuels must be first successfully tested in operational and also accident conditions for their possible inclusion in commercial use. Following part of the thesis specifically focuses on the boiling crisis in nuclear reactors which can damage the nuclear fuel cladding. Therefore, it is necessary to know the critical heat flux value and the departure from nuclear boiling ratio. Calculations which determine critical heal flux value are placed in the practical part of the thesis. Calculations are compared with the data obtained during experiments. The ALTHAMC12 and the other correlations which are based on the previous measurements are used for the computational analysis.
39

Effects of Surface Engineering on HFE-7100 Pool Boiling Heat Transfer

Mlakar, Genesis 01 September 2021 (has links)
No description available.
40

Konstrukční návrh zařízení pro studijní účely krize varu / Design concept of the facility for the educational objectives of the boiling crisis

Vojáčková, Jitka January 2012 (has links)
This thesis deals with a design concept of the facility for the educational objectives of the boiling crisis. In the first part, the issue of boiling crisis is explained. There are also examples of some experimental facilities in the world. The second part includes design concept of a loop, which is accompanied by designs of individual devices, such as separator, condenser, exchanger, pump, water tank, electric heater. The thesis also states designs of throttle control, temperature control and flow control.

Page generated in 0.4008 seconds