• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 1
  • 1
  • Tagged with
  • 53
  • 53
  • 20
  • 20
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

THE EFFECTS OF PLANT-DERIVED PROTEIN HYDROLYSATES ON THE GROWTH, QUALITY, AND PHYSIOLOGY OF GREENHOUSE CROPS

Seunghyun Choi (10347350) 30 July 2021 (has links)
Biostimulants offer an innovative approach to potentially improve crop yield and quality under abiotic stresses. Particularly, plant-derived protein hydrolysates (PH), a mixture of amino acids and soluble peptides from enzymatic or chemical hydrolysis of agricultural waste, are gaining global interest due to their sustainability and positive effects on crops. However, a functional role of the PH in crop yield and quality remains uncertain and is proposed to be associated with its phytohormone-like activities or serve as an additional nitrogen (N) source. Besides, the effects of PH on crop yield and quality are limited in intensive production systems such as greenhouse facilities. The purposes of this research are to examine the effects and mechanisms of PH on crops and to assess the potential of PH application to reduce fertilizer use in crop production. The specific objectives were to; 1) elucidate the hormone-like activities of PH in the adventitious rooting formation of cuttings, 2) evaluate the effects of different PH application methods on greenhouse crop yield and quality under different N levels when plants are grown with a commercial growing medium, and 3) examine the effects of PH application methods on yield and quality of hydroponically grown lettuce under different N levels and forms. Three conclusions were that 1) <a>the hormonal effects of PH are attributed to brassinosteroid-mediated processes, and PH has overlapping functions with auxin during adventitious rooting of cuttings in a plant species-specific manner</a>, 2) root application of PH (PH-R) effectively improves nutrient uptake compared to foliar spray of PH (PH-F), subsequently, increases the lettuce and tomato yield and quality regardless of N levels while PH-R did not change the chemical properties of growing media, and 3) PH-R effectively increases root growth, and subsequently, improving shoot yield and quality with significant PH × N levels and PH × NO<sub>3</sub>:NH<sub>4 </sub>ratios interactions. Also, PH-R counteracted the negative effects of low NO<sub>3</sub>:NH<sub>4 </sub>ratios on lettuce yield. The outcomes provide the optimization of PH and N fertilization in modern sustainable greenhouse production and the development of a new strategy for producing high-quality greenhouse crops with improved nutrient use efficiency.
22

Optimizing light quality for growth, nutritional quality, and food safety of lettuce in vertical farming

Yuyao Kong (15355009) 27 April 2023 (has links)
<p>  </p> <p>With the rapid growth in population and urbanization, an increased supply of fresh, nutritious, and safe food in urban areas is required. Relying solely on conventional agriculture for food production can be risky due to climate change and decreasing natural resources (i.e., water, and arable land). Vertical farming (VF) involves growing food crops (primarily leafy greens and small-statured fruits) at multiple levels in controlled environments with less land and water inputs. However, high operational costs have resulted in low-profit margins in VF, which are challenging the economic sustainability of the VF industry. With the present VF technology, it may be difficult to significantly reduce the operational costs. Therefore, maximizing the wholesale value of produce, which is determined by the total yield and sale price per unit quantity (or crop value), is critical for increasing profits in VF. In this research, the overall goal is to increase lettuce growth, nutritional quality, and food safety by optimizing the light quality of light-emitting diodes (LED) in VF to increase the whole value of produce and thus increase the VF profits. The objectives of the research were to (i) study the independent and interactive effects of monochromatic wavebands of light from UV-A (365 nm) to far-red (750 nm) on lettuce growth and nutritional quality; (ii) identify the effects of substituting moderate proportions of UV-A and a high proportion of UV-A coupled with far-red light in growth lighting on lettuce growth and nutritional quality; (iii) study the effects of lettuce cultivars and UV LED light on the survival of <em>E. coli</em> O157:H7 on lettuce in VF production.</p> <p>In the first study, we investigated the effects of different wavebands of light ranging from UV-A (370 nm) to far-red (733 nm), both independently and in combination with commercial growth lighting on lettuce growth, incident light-use efficiency (LUEinc), and levels of phytochemicals. Results showed that the monochromatic wavebands 389 and 733 nm had positive interactions with the growth lighting on lettuce. In addition, results also indicated that UV-A light at a peak wavelength of 389 nm could potentially increase phytochemical concentrations. In the second study, the effects of 40% UV-A (UV 389 nm) and 60% UV-A (UV 389 nm) plus 10% far-red (FR 733 nm) light for growth light during the plant stationary growth stage on lettuce biomass and biosynthesis of phytochemicals were examined. Results showed that substituting UV-A for 40% growth lighting during the plant stationary growth stage for seven days resulted in significantly increased levels of beta-carotene and phylloquinone in lettuce while slightly lowering lettuce growth. And the addition of far-red light to UV-A did not result in the expected increase in vegetative growth, while the levels of phytochemicals were not affected. In the third study, we first investigated the effects of four lettuce cultivars, including oakleaf, romaine, butterhead, and leaf lettuce on the survival of <em>E. coli</em> O157:H7 gfp+. Results showed that leaf lettuce had the lowest while oakleaf and romaine had the highest concentrations of <em>E. coli</em> O157:H7 gfp+ when sampled on days 2 and 7 after the inoculation, and on day 7 after harvest and storage at 4 °C. Then we examined the feasibility of supplementing UV-A, UV A+B, and UV A+C during plant growth stages to reduce <em>E. coli</em> O157:H7 gfp+ contamination on lettuce. Our results indicated that only the UV A+C light at an intensity of 54.4 μmol·m-2·s-1 for 15 minutes per day after inoculation reduced <em>E. coli</em> O157:H7 gfp+ contamination by 0.33 log CFU·g-1 without affecting plant growth and levels of phytochemicals.</p> <p>The outcomes from our research suggested that the interactive effects of monochromatic wavebands should be considered in developing light recipes. In addition, VF growers who are interested in improving the nutritional phytochemical levels such as beta-carotene and phylloquinone in lettuce while maintaining growth should consider adding a moderate proportion (< 40%) of near-blue UV-A (i.e., 389 nm) radiation during the plant stationary growth phase to growth lighting. However, shorter wavelengths of UV-A radiation are not recommended due to their negative effects on plant growth and high economic cost. For growers who are at high risk of <em>E. coli</em> O157:H7 contamination, it is suggested that growing leaf lettuce and supplementation of UV A+C LED light during the plant-growth period should be considered to reduce the <em>E. coli</em> O157:H7 contamination levels.</p>
23

Sustainable food production with aquaponics

Peng Chen (13176510) 01 August 2022 (has links)
<p>Sustainable food production is about producing more and better with less.As an emerging CEA system, aquaponics integrates recirculating aquaculture systems and hydroponics and can achieve the three SDGs mentioned above. However, challenges in sustainable aquaponics commercialization remains and my thesis addresses the following three layers of sustainable aquaponics  development:  sustainability  assessment,  sustainable  system  design  and management, understanding biological mechanisms for scalability.</p> <p>I conducted acradle-to-gate life cycle assessment (LCA)and compared the environmental performance, on an economic basis, of aquaponics andhydroponics withidentical system design in Indiana, US. Aquaponics produced 45% lower endpoint environmental impact than hydroponics.Electricity use for greenhouse heating and lighting, and water pumping and heating contributed to themajority of the environmental impacts of both systems, which was followed by the production of fishfeed and fertilizers. However, changing the energy source from coal to wind power could make thehydroponic system more environment-friendly than the aquaponic system. This LCA study can provideCEA farmers with the groundwork to reduce the environmental cost of their production.</p> <p>Aquaponics uses bacterial processes and plant nutrient uptake to recover nutrient from aquaculture wastewater. However, little is known which wastewater management strategy, autotrophic or heterotrophic, is best suited for the four objectives: nutrient recovery, system reliability, and growth and physiological welfare of fish and plants. In this study, I found that pH6 had the highest nitrogen (N) use efficiency (NUE) (assimilated by fish and plants, 65.5%) and the lowest N loss as gas (34.5%), followed by pH6M (55.5% and 44.5%,respectively), suggesting that lower pH and less organic carbon in aquaponics could enhance NUE and reduce N loss. pH6M had the highest phosphorus (P) use efficiency (PUE) (assimilated by fish and plants, 65.0%) suggesting that lower pH and organic carbonaddition could facilitate P recovery from wastewater. </p> <p>Reverse osmosis (RO) water enables aquaculture to expand in places where natural water is not desirable and reduces uncertainty in the operation. However, high K+environment of RO in  aquaponics  couldinduce  physiological  stress,  but  adaptation  mechanism  is  unknown. Proteomic analysis revealed up-regulation of stress response proteins and down-regulation of V-type H+-ATPase and other ion transporters, suggesting cellular adaptation of fish to RO water stress. In conclusion, fish was able to accommodate to the RO environment and the benefits of efficient ammonia excretion and increased feed consumption outweighed the stress caused by RO. RO water could be a standardized water source for better animal welfare, reduce uncertainty in production and assist scaling up aquaponics industry.</p>
24

<b>Evaluating Strategies to Produce Compact Vegetable Plants and Identifying Gardening Preferences and Behaviors Using a Citizen-Science Approach</b>

Michael David Fidler (19199887) 23 July 2024 (has links)
<p dir="ltr">New cultivars of compact tomato (<i>Solanum lycopersicum</i>) and pepper (<i>Capsicum annuum</i>) plants are available to consumers, creating niche market opportunities for greenhouse growers who produce vegetable bedding plants for spring sale. However, production guidelines for these crops are limited. We conducted two experiments to evaluate non-chemical means of height control for these plants. In the first experiment, we treated ‘Siam’ tomato and ‘Basket of Fire’ pepper plants with 0, 50, 100, 150, or 200 mg·L<sup>–1</sup> nitrogen (N) during the “production” phase and used a similar or higher N concentration during the “fruiting” phase. Our results show that although height of these plants can be controlled with lower fertilizer concentration, their yield will likely be affected by limiting fertilizer availability. In addition, our findings suggest that these plants can be grown without the addition of fertilizer during production, provided that the substrate has a starter fertilizer charge, and that sufficient fertilizer is applied during the fruiting phase. In the second experiment, we characterized the effects of fertilizer use and substrate volumetric water content (VWC) during production using the same compact plants, and evaluated post-production carryover effects on growth and yield. Plants either received water-soluble fertilizer (100 mg·L<sup>–1</sup> N) once a week, or were irrigated with tap water only, relying on the starter fertilizer charge in the substrate. In addition, plants were irrigated when the substrate VWC reached 0.15, 0.30, 0.45, or 0.60 m<sup>3</sup>·m<sup>–3</sup>. Overall, our results show that substrate VWC had minimal effects on growth and yield, but plants that were not fertilized were shorter, had less biomass, and produced less fruit than those treated with fertilizer. These findings suggest that growth and yield of these compact tomato and pepper plants are affected to a larger extent by fertilizer use than by substrate VWC.</p><p dir="ltr">In effort to better understand consumer preferences for these new compact plants, we used a citizen-science approach in another experiment. Approx. 300 participants from three states in the USA (IN, IA, and TN) compared three compact tomato cultivars (Red Robin, Cocoa, and Micro Tom) started from seed or as transplants. In addition, we compared pre- and post-experiment survey responses to assess potential changes in behaviors, beliefs, and attitudes towards gardening as a result of the experiment. Cocoa was the preferred cultivar, closely followed by Red Robin. Our results indicate participants valued plant appearance, fruit yield, and fruit taste when making these preference choices. Approximately 70% of participants preferred plants started as transplants compared to those from seed, regardless of cultivar. Most participants reported they would be willing to pay between $1.00 to $7.49 more for a transplant of their favorite cultivar compared to tomato plants available at local nurseries. Results for dietary behaviors show that participants increased their consumption frequency of fruit, lettuce salad, vegetables, and food mixed with vegetables at the end of the experiment, but few differences were measured for beliefs and attitudes towards gardening, likely due to previous positive biases towards gardening among project participants. In conclusion, results from our experiments show that growth and yield of compact tomato and pepper plants can be controlled by adjusting fertilizer management practices. In addition, citizen science was shown to be an effective research method to assess plant-performance and consumer-preference data, and to measure potential changes in behavior of project participants.</p>
25

Optimizing Irrigation and Fertigation for Watermelon Production in Southern Indiana

Emerson Luna Espinoza (18853381) 22 June 2024 (has links)
<p dir="ltr"><a href="" target="_blank">Watermelon [<i>Citrullus lanatus </i>(Thunb.) Matsum. & Nakai] is one of the world's top three most consumed fruits.</a> Indiana cultivates approximately 7,000 acres of watermelons every year, ranking 6<sup>th</sup> in the nation. More than 70% of this production is concentrated in and around Knox County, making Southern Indiana a key region for watermelon production in the States. Despite its significance, watermelon production faces many challenges, including erratic rainfall patterns exacerbated by climate change. Enhanced irrigation management has emerged as a critical strategy in mitigating negative environmental effects and in optimizing fertilizer applications.</p><p dir="ltr">Currently, Southern Indiana farmers have incorporated different irrigation and fertilization practices into watermelon production, yet the effects on production outcomes remain poorly understood. To bridge this gap in knowledge, this study aims to explore the effects of existing practices on watermelon yield and develop irrigation guidelines for optimal production in the region. The experiment was conducted at Southwest Purdue Agricultural Center, Vincennes, Indiana, in 2022 and 2023. Four treatments were applied: High Irrigation, Low Irrigation, No Irrigation, and Fertigation. Fertigation treatment received the same water application as the High Irrigation treatment. Fertilizers were applied pre-plant in the High, Low, and No irrigation treatments, while frequent fertigation was applied to the Fertigation Treatment. Soil moisture sensors measuring volumetric water content were used for irrigation decisions. In 2022, the irrigation thresholds were set at 15% water depletion at 1-ft depth for High Irrigation and Fertigation treatment, and 2-ft depth for Low Irrigation. In 2023, the irrigation threshold for Low Irrigation was adjusted to 40% water depletion at 1-ft depth.</p><p dir="ltr">While soil moisture levels in the bed at the different depths varied notably among treatments, no significant differences in yield by weight were observed. The minimal impact of irrigation on watermelon yield suggests that rainfall provides sufficient water, preventing yield-reducing stress. However, the Fertigation and High Irrigation treatments yielded more fruit than the Low Irrigation and No Irrigation treatments. The dry periods in both years coincided with the watermelon fruit setting stages that may have contributed to the lower fruit set in the Low Irrigation and No Irrigation treatments. Fertigation showed a higher early yield than the other treatments in 2022. Analysis of soil and tissue nitrogen levels indicated that sole nitrogen application before planting could result in excessive soil nitrogen levels during vegetative growth. This excess nitrogen might delay flowering and harvest. This project offers insights into enhancing irrigation and fertilization practices for watermelon production in southern Indiana.</p>
26

Demonstrating an approach for modeling crop growth and hydrology using SWAT 2009 in Kanopolis Lake Watershed, Kansas

Mollenkamp, Lorinda Larae January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Kyle R. Douglas-Mankin / Aleksey Y. Sheshukov / According the U.S. Environmental Protection Agency’s (EPA) website, our planet is at risk of global warming due to greenhouse gas emissions. The earth’s average temperature has been reported to have risen by 1.4°F over the last century. This seemingly small increase in average planetary temperature has been linked to devastating floods, severe heat waves, and dangerous and unpredictable shifts in our climate (US EPA, 2013a). In the 2012 report, the Intergovernmental Panel on Climate Change states that bioenergy has the potential to significantly mitigate greenhouse gases as long as this is produced in a sustainable manner (Chum, et al., 2011). In light of these facts, research into the sustainable production of bioenergy sources in the United States is currently underway. To ensure that the correct biofuel crop is selected for a given region and to investigate any secondary effects of changing our nation’s agricultural practices to include biofuels, computer models can be very useful. The Soil Water Assessment Tool (SWAT) is a robust, continuous time step model that was developed by the USDA Agricultural Resource Service that can simulate changes in land use and land management and the effect this has on erosion, water quality, and other important factors. This paper describes the preliminary work to create a model of the Kanopolis Lake Watershed that is part of the Kansas River Basin using SWAT 2009. Data pertaining to weather, topography, land use, management, stream flow, and reservoirs was gathered and incorporated into the SWAT model. This was then simulated to obtain the uncalibrated data. SWAT produced unacceptable statistics for both crop yields and for stream flow using the Nash-Sutcliffe Efficiency equation and using percent bias. This suggests that the model must be calibrated to be of use in understanding both the current and future land use scenarios. Once the model is calibrated and validated, it can be used to simulate different biofuel cropping scenarios.
27

Strategies for Reducing Supplemental Irrigation of Cool-Season Lawns through Species Selection, Mowing Practices, and Irrigation Scheduling

Jada S Powlen (6620417) 14 May 2019 (has links)
Water resources for outdoor areas, such as lawns and landscapes, continues to become limited in many urban areas, especially in times of acute drought stress. Lawn species selection and cultural practices, such as mowing height, can strongly influence overall seasonal water needs. While previous research has reported various lawn species water use rates and differences in the ability of some cultivars to maintain green coverage during acute drought stress, little is known regarding the irrigation requirements of cool-season lawn species when using a deficit irrigation strategy based on a green coverage target threshold (e.g. 60-80% green) approach. Two greenhouse studies were conducted to screen various candidate species and seed mixtures in a sandy media. The highest water use and worst appearance/green coverage was associated with an inexpensive commercial lawn mixture; and the lowest water use and best appearance was generally associated with improved Kentucky bluegrass (<i>Poa pratensis</i> L.: KBG) cultivars. Field studies were conducted to quantify the irrigation requirements of drought susceptible (DS) and improved, drought tolerant (DT) KBG and tall fescue [<i>Schedonorus arundinaceus</i> (Schreb.): TF] cultivars, blends and mixtures at two mowing heights (5.1 or 8.9 cm). Results from a 74-day field study using a deficit irrigation replacement approach with a 70% green coverage threshold (GCT<sub>70</sub>) irrigation trigger, demonstrated water savings of approximately 73 to 78% when using a DT TF (60.3 mm) as compared to 100% evapotranspiration (ET­<sub>o</sub>) replacement (223.4 mm) and a conventional lawn irrigation approach (268.5 mm), respectively. The time to reach the GCT<sub>70</sub> generally ranked: TF=TF:KBG mixture>KBG and ranged from 18.0 days for DS ‘Right’ KBG and 52.5 days for DT ‘RainDance’ TF. Among TF and KBG cultivars using the GCT­<sub>70 </sub>irrigation approach, DT TF required 35 to 68% less supplemental irrigation compared to DT and DS KBG cultivars (92.1 vs. 187.3 mm), respectively. Within KBG cultivars, the DT ‘Desert Moon’ required one-half the irrigation of DS Right (92.1 vs. 187.3 mm), while there were no differences among TF cultivars for irrigation needs. Mowing height did not affect KBG irrigation needs, but TF at 5.1 cm showed increased visual quality and green coverage, and significantly reduced irrigation requirements. Field research also compared species mixtures and blends using DS and DT KBG and TF to determine the amount of a DT species/cultivar that would enhance drought performance with ratios ranging from 25-100% DT as well as 90:10 TF:KBG mixtures. The quantity of a DT KBG in a blend, and DT TF in a TF:KBG mixture reduced irrigation needs, whereas the drought rating of the KBG cultivar in a TF:KBG mixture had no significant effect. In summary, these studies continue to demonstrate that significant supplemental lawn irrigation savings can be achieved by the selection of superior DT species and cultivars combined with a deficit irrigation replacement approach compared to other cool-season species and conventional irrigation practices.
28

Effects of Elevated CO2 on Crop Growth Rates, Radiation Absorption, Canopy Quantum Yield, Canopy Carbon Use Efficiency, and Root Respiration of Wheat

Monje, Oscar A. 01 May 1993 (has links)
Wheat canopies were grown at either 330 or 1200 μmol mol-1 CO2 in sealed controlled environments, where carbon fluxes and radiation interception were continuously and nondestructively measured during their life cycles. The effects of elevated CO2 on daily growth rates, canopy quantum yield, canopy and root carbon use efficiencies, and final dry mass were calculated from carbon flux measurements in an open gas exchange system. Dry biomass at harvest was predicted from the gas exchange data to within ± 8%. The greatest effect of elevated CO2 occurred in the first 15d after emergence; however, several physiological processes were enhanced throughout the life cycle. Elevated CO2 increased average net photosynthesis by 30%, average shoot respiration by 10%, and average root respiration by 40%. Crop growth rate, calculated from gas exchange data, was 30% higher during both vegetative growth and reproductive growth. Elevated CO 2 did not affect radiation interception, but increased average canopy quantum yield from 0.039 to 0.051 (31%). Average canopy carbon use efficiency was increased by 12%. Although harvest index was unaffected, these increases in the physiological determinants of yield by elevated CO2 resulted in a 14% increase in seed yield.
29

Nutrition of container grown plants with emphasis on the Proteaceae

Thomas, M. B. January 1979 (has links)
A range of Proteaceous shrubs and other nursery plants were grown in containers with soilless media and various N levels. Plants demonstrated a range of responsiveness. Supplying soilless media with Osmocote (26% N) and other short term fertilisers proved to be a satisfactory method of studying the comparative nutrition of a wide range of container grown nursery plants using factorial experiments incorporating N, P, K and lime. Nutrient response surfaces were obtained using a central composite incomplete block design. Most Proteaceous shrubs were intolerant of high P levels due to excessive luxury consumption resulting in toxic foliar nutrient levels, especially in the presence of high N. Phosphorus sensitivity in plants appeared to correspond with the soil nutrient levels in their native habitat. This applied to species studied in the 2 main sub-families in the Proteaceae while similar findings were indicated for other Australian genera. A range of optimum N requirements in the Proteaceae was found – lowest needs for Protea which also had the greatest tolerance of very low fertiliser additions, compared to Grevillea robusta with much higher N requirements and strong foliage growth inhibition if nutrient levels are very low. Proteoid root growth on Grevillea rosmarinifolia only occurred at low nutrient levels and was not required for satisfactory foliage growth of container grown plants. Pot plants and seedlings, especially tomato, responded strongly to N and often there were positive NK interactions influencing foliage growth. Lime requirements were studied and in erica increasing lime rates depressed foliage growth. Comparative nutrition studies indicate that general or broad spectrum container media may be unsuitable for some groups of nursery plants and that they could be replaced by potting mixes designed to meet the widely differing needs of the species often grown. The number of specialist mixes would depend on the range of plants and be governed by management considerations.
30

PRODUCTION AND NUTRITION RECOVERY OF CROPS IN A RECIRCULATING AQUAPONIC SYSTEMS

Teng Yang (7037720) 16 August 2019 (has links)
<div>The goal of this research was to improve crop yield and quality and enhance nutrient use efficiency of aquaponics for the development of sustainable aquaponic production system. Aquaponics is the integration of aquaculture and hydroponics by recirculating water and residual nutrients resulting from aquaculture wastewater into hydroponic crop production. The project had four objectives. The first objective was to characterize nutrient composition and accumulation in recirculating water and plant parts of tomato, basil, and lettuce grown in aquaponic systems, and to compare their growth and yield with those grown in hydroponic systems. The second objective was to determine the effects of feeding management regime on water quality, crop yield and quality, and N use efficiency for vegetable and herb production in recirculating aquaponics in comparison to hydroponics. The third objective was to optimize water-flow rate for efficient aquaponic system for maximum crop yield. The fourth objective was to investigate and compare the N and P mass balance between aquaponics and hydroponics. Four conclusions were determined that 1) Aquaponic solution was deficient in Ca and/or Mg leading to plant nutrient deficiency but sufficient or high in P; And luxuriant nutrient profiles in hydroponics are not necessary to enhance crop yield in aquaponics as long as key factors affecting crop yield are identified and properly addressed. 2) Uniform feeding regime improved water quality by reducing toxic ions and enhancing initial nutrient availability and considerably increased the yield, quality and nitrogen use efficiency (NUE) of crops in aquaponics as close or similar to those in hydroponics. 3) Flow rate is an important factor affecting water quality parameters and optimizing flow rate is essential to maximize aquaponic crop production and improve energy efficiency; High hydraulic loading rate at 3.3 m3/m2-day improved performance and yield of all crops in an aquaponics system regardless of their growth rate, but the water hydraulic loading rate for fast-growing and medium-growing crops can be reduced to 2.2 m3/m2-day without production reduction. 4) Plant species had significant influence on N and P removal and mass balance in aquaponics and hydroponics; Fruity vegetables showed better growth adaption in aquaponic system, while yields of leafy vegetables may be reduced when grown in aquaponics than hydroponics; Aquaponics is more efficient than hydroponics releasing less environmental wastes, however, N and P use efficiency in aquaponics and hydroponics can be further improved via proper management.</div><div>The important findings obtained from this research will fill the knowledge gap in aquaponic research and provide new management strategies to improve quantitative study of aquaponic crop production and new management strategies for cultivating crops in aquaponics. The findings will also greatly contribute to the commercial aquaponic development, and ultimately improve food security and resource use efficiency in the US and global agricultural production.</div>

Page generated in 0.0766 seconds