• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 17
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 59
  • 59
  • 34
  • 21
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Impacts of long term tillage and residue practices on selected soil properties

Dam, Rikke Friis January 2003 (has links)
A two year study was initiated in 2001 on a 2.4 ha site of mostly St. Amable loamy sand and shallow loamy sand at the Macdonald Campus Research Farm. This study sought to assess the effects of long term tillage and residue practices on soil physical properties and to relate these properties to their influence on total carbon, total nitrogen and soil microbial biomass-carbon. The site was set up as a factorial experiment with three tillage practices (no till---NT; reduced till---RT; and conventional till---CT) and two residue practices (with residue (grain corn), +R; without residue (silage corn), -R). Soil physical properties measured were bulk density, macroporosity at -6 kPa, saturated hydraulic conductivity (Ksat ), dry aggregate distribution, soil moisture and soil temperature. Wheel versus non-wheel track bulk density was also determined in the NT plots. Total porosity, soil water characteristic curves and pore volume distribution were derived from field samples. Crop yield was also assessed. Tillage alone had an effect on total porosity, bulk density, pore diameter and macroporosity. No individual physical property was significantly affected by the residue treatments; however, the tillage and residue interaction was significant for Ksat, soil moisture and soil temperature. Dry aggregate distribution was not affected by either tillage, residue or the combination of the two. Tillage affected total carbon and total nitrogen in the 0--0.10 m depth. Soil microbial biomass-carbon was affected by residue inputs. Total carbon and nitrogen were influenced by the bulk density, but none of the other soil physical properties. Soil microbial biomass-carbon was not influenced by any of the physical properties. Tillage and residue practices had no significant effect on crop yield for either year.
42

Applied soybean and maize residue contributions to soil organic matter in a temperate soybean/maize intercropping system

Bichel, Amanda January 2013 (has links)
Intercropping, defined as two or more crops grown on the same land area at the same time, is a sustainable alternative to sole crops. Intercropping has been associated with multiple benefits, such as increased nutrient and soil organic carbon (SOC) cycling, decreased soil erosion and increased carbon (C) sequestration. A common intercropping practice is to integrate cereal and legume crops such as maize (Zea mays L.), and soybean (Glycine max (L.) Merr.). Most studies on intercropping have focused on yield, weed control, and land use efficiency in the tropics. Few studies have researched C and nitrogen (N) dynamics in temperate intercrops, with respect to soybean and maize residue stabilization. Soil from Balcarce, Argentina, was incubated for 140 days with soybean, maize, or no residue. Throughout the incubation, results illustrated the effect of residue application upon the soil, specifically through significantly higher amounts of light fraction (LF) C and LFN concentrations, soil microbial biomass (SMB) C and SMBN concentrations, higher microbial diversity, lower N2O production rates, in addition to distinct isotopic values in soil fractions and CO2 (p<0.05). Furthermore, it was observed from δ15N-TN and δ15N-LF that treatments with soybean residues included had higher N cycling (p<0.05), emphasizing the importance of including N-fixing legumes in complex agroecosystems. Significant changes over time in SMB and SMCS characteristics, and isotope values (p<0.05) indicated the preferential utilization of relatively young and easily accessible litter. Furthermore, the loss of labile material over the incubation resulted in more recalcitrant forms (such as older C and lignin) to be utilized. Slightly higher SOC, TN, LFC and LFN concentrations, as well as lower CO2 production rates suggested 2:3 (rows of maize:rows of soybean) as a more desirable intercrop design for C sequestration. The 1:2 intercrop design was observed to be more beneficial for microbial community structure, furthering the idea that intercropping is a beneficial alternative to sole cropping. This study improves knowledge in residue stabilization and C sequestration in complex agroecosystems, providing encouragement for the implementation of more sustainable management practices.
43

Residue composition influences nutrient release from crop residues

Collins, Shane January 2009 (has links)
[Truncated abstract] A greater adoption of stubble retention, minimum-till and no-till farming practices for the purposes of conserving soil, water and fertility requires a greater understanding of the complexity of physical and chemical interactions between the soil and crop residues. There is currently insufficient knowledge to allow reliable predictions of the effects of different residue types in different environments on soil fertility and crop growth, owing to the many residue characteristics and environmental interactions that have been shown to affect decomposition or nutrient release. The role of fibre and nutrient composition in nutrient release from crop residues, and implications for residue management techniques, were studied. Canola, lupin and field pea residues, obtained from farmland in Meckering and Northam, Western Australia, were separated into upper and basal stems, leaves, and siliques or pods. This was done to provide materials with a wide range of chemical and physical characteristics, and also allowed consideration of differential residue management of plant organs, such as comparing harvested canola siliques and retained canola stubble. Pre-treatment by chopping and/or humidification was applied to residues to provide some information about the processes of nutrient release. Residues were subjected to simulated rainfall to assess nutrient leaching from plant material, and placed on soil in pots in constant-temperature glasshouse conditions to assess decomposition. Amounts and rates of change of residue fibre and nutrients were determined throughout leaching and decomposition. Energy Dispersive X-ray (EDX) microanalysis was used to assess the location of diffusible ions in air-dried residues and the effects of humidification on nutrient positioning and release. ... However, the release of calcium and magnesium depended on the decomposition of the more recalcitrant components such as cellulose and lignin, as supported by microscopy results showing changes in nutrient distribution following humidification. The proportionality of amounts of calcium and magnesium leached and released during decomposition is likely to suggest a similarity of chemical form more than similarity of function or position of the two elements. Management of crop residues for maximising and optimising the timing of release of different nutrients will need to take into account the placement of different plant types and parts, particle sizes distribution and pre-treatment of material to efficiently manage short- and long-term soil fertility to sustain crops, particularly on degraded soils. Significant nutrient release of potassium, sulphur and magnesium from crop residues can be achieved from surface placement, with the release of potassium and sulphur managed by modifying residue particle size through appropriate harvesting, ploughing or sowing implement selection. High nutrient uptake crops and plant parts –where they can be economically viable to grow or separated by the harvesting technique – are particularly valuable as sources of nutrients and soil organic matter.
44

Prise en compte du rôle de la diversité microbienne dans la simulation de la dynamique de la matière organique du sol (MOS) dans un contexte de transition vers l'agro-écologie / Taking into account microbial diversity influence on soil organic matter (SOM) dynamic predictions in a context of agroecological transition

Louis, Benjamin 24 November 2016 (has links)
La thèse propose et évalue une méthode de prise en compte de la diversité microbienne dans un modèle mécaniste opérationnel de dynamique du carbone (C). Partant d'un modèle classique dont les flux de minéralisation sont décrits par des cinétiques d'ordre 1, nous proposons des fonctions de modulation des paramètres des équations prenant en compte des indices de diversité microbienne. Elle s’appuie sur 2 jeux de données contenant des mesures de diversité microbienne et des cinétiques de minéralisation du C sur 80 jours, en conditions contrôlées, avec et sans apport de blé marqué au 13C, issus d'échantillons de sols agricoles diversifiés.L'utilisation de modèles statistiques additifs généralisés (GAM) a permis d'identifier les indices de diversité pouvant expliquer la dynamique du C. Des fonctions de modulation ont été proposées selon les relations mises en évidence.L'ensemble a été calibré à l'aide de méthodes bayésiennes. L'ajout d'une fonction de modulation dépendante de la diversité bactérienne a permis d'améliorer la prédiction des flux issus de la minéralisation de la MOS. En revanche, l'intégration d'une fonction dépendante de la diversité fongique n'a pas permis l'amélioration des flux issus de la minéralisation du résidu ou de la MOS.La méthode proposée d'intégration de la diversité microbienne dans les modèles génériques de dynamique du C constitue une approche prometteuse pour une représentation parcimonieuse de son influence. Il s'agit d'un cadre méthodologique complémentaire à la prise en compte détaillée de cette diversité dans les modèles de dynamique du C / This thesis suggests and assesses a way to integrate microbial diversity in an operational mechanistic model of C dynamic. From a classical model where mineralisation fluxes are described by 1st order kinetics, we propose functions depending on microbial diversity indices to modulate the parameters of these kinetics. We used 2 datasets containing measures of microbial diversity and C mineralisation kinetics from controlled conditions incubations during 80 days, with and without 13C labelled wheat straw, from grassland and cropland soil samples.In a first step, based on statistical generalizes additive models (GAM), we identified the microbial diversity indices relevant to explain C dynamic. Observed relations allowed us to submit modulation functions depending on microbial diversity to adjust model parameters. The whole has been calibrated through bayesian inference.Overall, the modulation function depending on bacterial diversity led to an improvement of SOM mineralisation fluxes predictions, while fungal based modulation functions led to no improvement.To conclude, the proposed method to integrate microbial diversity was a relevant approach towards a parsimonious representation of microbial diversity influence on C dynamic in generic model. It forms a complementary methodological framework to the dominant explicit and detailed way of microbial diversity representation in C dynamic models.
45

Impacts of long term tillage and residue practices on selected soil properties

Dam, Rikke Friis January 2003 (has links)
No description available.
46

Crop residue management effects on crop production, greenhouse gases emissions, and soil quality in the Mid-Atlantic USA

Battaglia, Martin 19 December 2018 (has links)
Cellulosic biomass-to-bioenergy systems can provide environmental and economic benefits to modern societies, reducing the dependence on fossil-fuels and greenhouse gas emissions while simultaneously improving rural economies. Corn (Zea mays L.) stover and wheat straw (Triticum aestivum L.) residues have particular promise given these crops are widely grown and their cellulosic fractions present a captured resource as a co-product of grain production. Annual systems also offer the ability to change crops rapidly in response to changing market demands. However, concerns exist about residue removal effects on soil health, greenhouse gases emissions and subsequent crop productivity. The carbon footprint and the crop yield productivity and soil health responses resulting from the removal of crop residues has been studied extensively over the last 20 years, but this research has been largely conducted in the Corn Belt. To investigate the impact of crop residue removal in the Mid-Atlantic USA, combinations of corn stover (0, 3.33, 6.66, 10 and 20 Mg ha-1) and wheat straw (0, 1.0, 2.0, and 3.0 Mgha-1) were soil applied in a corn-wheat/soybean (Glycine max L. Merr.) rotation in Virginia's Coastal Plain. Corn stover (0, 3.33, 6.66, 10 and 20 Mg ha-1) was applied in a continuous corn cropping system in the Ridge/Valley province. For each system, residues were applied following grain harvest over two production cycles. Each experiment was conducted as a randomized complete design with four replications. The highest rates of stover retention resulted in greater greenhouse gas emissions in year 1, but not year 2 of these studies and did not affect overall global warming potentials. Stover application also increased soil carbon but had little effect on other measures of soil quality. Stover K levels were greater with high rates of stover retention. Overall, these studies indicate little effect of residue removal or retention (above typical residue production rates) on subsequent crop production, greenhouse gas emissions, or soil health measures in the short term. This study is one of the first to assess residue removal in the Mid-Atlantic USA and is the first study to investigate the impacts that managing more than one crop residue in a multi-crop system. Longer-term research of this type may be warranted both to determine the consequences of residue management and to start building a regionally-specific body of knowledge about these practices. / Ph. D. / Over the last decade, strategic economic and environmental concerns have increased interest in the use of crop residues as sustainable, renewable sources for bioenergy and bio-products. Most of the work investigating the sustainability of residue removal has occurred in the US Corn Belt, where corn stover and wheat straw (the part of the plant that is not grain) supplies are abundant. Although the research data from the Corn Belt provide guarded optimism about residue harvest systems in the Midwest, it is not suitable to extrapolate these results to the South because of differences in soils, climate, and cropping systems. Cooler, humid conditions can sustain higher levels of soil organic matter, lessening but not eliminating concerns about stover removal. Current research from the Midwest region suggests routine stover harvest – within limits – can be sustainable. The development of new bioenergy and bioproduct industries in the Southeast region is leading to a growing expectation that regional cropping systems will supply the millions of tons of biomass needed for these new businesses. However, few data are available regarding sustainable crop residue harvest from the Southeast. Sustainable levels of residue removal may be quite low given regional soil and climatic conditions, and the effects of residue removal on soil health parameters and greenhouse gas emissions remain to be defined. The purpose of this project was to determine the amount of corn stover and wheat straw can sustainably be harvested from Virginia’s grain-based cropping systems without reducing plant productivity or soil quality or increasing GHG emissions. This research generated regionally relevant information on the impacts of crop residue removal to help determine whether harvesting wheat straw and corn stover can be a sustainable practice for the region’s cropping systems. In a first stage, short term impacts of residue removal on soil quality and greenhouse gases were measured in Blacksburg and New Kent, VA, over the period 2015-2017.
47

Emissão de gases de efeito estufa do solo devido à remoção de quantidades de palha de cana-de-açúcar e à adubação nitrogenada / Greenhouse gas emission due to sugarcane straw removal and nitrogen fertilization

Vasconcelos, Ana Luisa Soares de 02 December 2016 (has links)
A palha de cana-de-açúcar tem sido uma importante matéria prima para aumentar a produção de bioenergia no Brasil. Porém a dinâmica das emissões de gases de efeito estufa no campo devido à prática de remoção de palha ainda não é totalmente compreendida. O objetivo deste trabalho foi quantificar as emissões de GEE do solo devido à remoção da palha de cana-de-açúcar com e sem adição de nitrogênio. Foram realizados dois experimentos com câmaras amostrais de gás mantidas em condições naturais com quatro tratamentos: sem palha, 3, 6 e 12 Mg ha-1, os quais equivalem as intensidades de 100, 75, 50 e 0% de remoção. O primeiro foi conduzido por 180 dias sem adição de N e o segundo experimento conduzido por 100 dias, foi adicionado 80 kg ha-1 de N no sulfato de amônio e 32 kg ha-1 de N na vinhaça. Conjuntamente ao experimento 1, foi conduzido um ensaio de decomposição com as mesmas quantidades de palha limitadas por caixas plásticas sem fundo (0,3 x 0,5 m). No Experimento 1 a presença de palha aumentou 35 - 45% os fluxos acumulados N2O e CO2 em relação ao solo descoberto. O influxo de CH4 aumentou 40% na presença total de palha (12 Mg ha-1) em relação ao sem palha. O fator de emissão de N2O encontrado para a palha em decomposição foi de 0,02%. No Experimento 2 ocorreu uma intensificação das emissões devido à adubação nitrogenada, com isso as emissões em razão das quantidades de palhas não foram significantes. O fator de emissão médio foi de 0,42%. Os resultados indicam que a palha, sem N, possui um efeito na emissão de GEE e, que para manter o estoque de C do solo, é necessário a manutenção de pelo menos 6 Mg ha-1 para compensar as perdas de CO2 por respiração. Este trabalho contribuirá para os cálculos de pegada de carbono do bioetanol e na decisão da usina sobre a intensidade de remoção de palha de cana-de-açúcar para a produção de energia e etanol 2G / Sugarcane straw has been point out as an important feedstock to increase bioenergy production in Brazil However, the field greenhouse gas (GHG) emission dynamic due straw removing management is not completely understood yet. Two experiments were conducted with gas sampling chambers that was kept under natural conditions with four treatments: bare soil, 3, 6 and 12 Mg ha-1, which is approximately the equivalent of the 100, 75, 50 and 0 % intensities of removing. The first was conducted for 180 days without the N addition and the second experiment was conducted for 100 day and its was added 80 kg ha-1 N in ammonium sulfate and 32 kg ha-1 N in the vinasse. Parallely to the experiment 1, a decomposing trial was conducted with the same straw amounts in a side limited bottomless plastic boxes (0.3 x 0.5 m). In Experiment 1, the presence of straw increased 35-45% the N2O and CO2 accumulated flux compared to the bare soil. While the influx of CH4 increased by 40% in the maximum straw amount (12 Mg ha-1) compared to zero. The N2O emission factor found for the straw decomposition was 0.02%. In Experiment 2 occurred an intensification of emissions due to nitrogen fertilization which raised the average emission factor for 0.42%. Thus emission due straw quantities were not significant. The results indicate that the straw without N has an effect of GHG emissions, and in order to maintain the C stock in soil is need keep at least 6 Mg ha-1 of straw to compensate for the loss of CO2 thru respiration. This work will contribute to the bioethanol carbon footprint calculation and in the grower decision taking of straw removing intensity for energy and 2G ethanol
48

Residue management and yield characteristics of fine fescue seed crops

Schumacher, Derek David 29 April 2005 (has links)
Chewings fescue [Festuca rubra L. subsp. fallax (Thuill.) Nyman] is a desired turfgrass with dense sod forming capabilities and superior shade tolerance. Thermal residue management (open-field burning) has traditionally been used to remove post-harvest residue and maintain seed yield over the life of the stand. However, alternative non-thermal residue management practices have been observed to produce adequate seed yields dependent upon cultivar. Strong creeping red fescue (F. rubra L. subsp. rubra) is desired for its prolific tillering capacity and creeping rhizomatous growth habit. In contrast to Chewings fescue, maintenance of seed yield in strong creeping red fescue has only been profitably produced under thermal residue management. Slender creeping red fescue [F. rubra L. var. littoralis (Vasey)] is a desired turfgrass with a compact, less rhizomatous growth habit, similar to Chewings fescue in desirable turf attributes. However, little is known about the effects of post-harvest residue management in slender creeping red fescue. The objectives of this study were: 1) to evaluate seed yield and yield components among different cultivars to thermal (open-burning), and non-thermal (flail low and flail high) post-harvest residue management; 2) to evaluate harvest index and percent cleanout to thermal and non-thermal residue management in different cultivars; and 3) and to provide an economic analysis of thermal and non-thermal residue management in all cultivars based on partial budgeting. Three post-harvest residue management treatments (burn, flail low and flail high) were applied over the course of two years. Seed yield components measured included: total dry weight, fertile tiller number, spikelets per panicle, florets per spikelet, and panicle length. Final seed yield in each cultivar and residue management treatment method was determined after seed harvest and conditioning. Seed yield component analysis was conducted over three production seasons. Chewings fescue, strong creeping red fescue, and slender creeping red fescue cultivars responded differently to residue management as indicated by a residue management by cultivar interaction. In 2003 and 2004, residue management by cultivar interactions were evident in seed number, seed weight, fertile tiller number, percent cleanout, harvest index, and seed yield. Residue management by cultivar interactions occurred in spikelets per panicle in 2003, whereas in 2004 a residue management by cultivar interaction occurred in panicle length and florets per spikelet. In 2004, non-thermal flail low, and thermal residue management resulted in significantly greater spikelets per panicle in all cultivars. Thermal residue management resulted in the greatest number of spikelets per panicle. Results indicate that thermal residue management best maintained seed yield in most subspecies and cultivars across both years. However, in 2003, non-thermal flail low residue management produced profitable seed yield in only Marker slender creeping red fescue. In contrast, thermal residue management resulted in poor seed yields in Marker slender creeping red fescue and enhanced yields in Seabreeze slender creeping red fescue in 2003. However, following the second year of thermal treatment in 2004, Marker and Seabreeze both had lower seed yields, thus exhibiting the only negative impact of thermal management among the cultivars tested in this study. Moreover, upon review of an economic analysis, Marker slender red fescue was the only cultivar that produced a positive net return of $78 and $4 ha⁻¹ under non-thermal residue management in 2003 and 2004, respectively. Furthermore, in 2003, thermal residue management net return increases ranged from $104 ha⁻¹ to -$996 ha⁻¹ in Barnica and Shademark, respectively. In 2004, thermal residue management net return increases ranged from $115 ha⁻¹ and $1,332 ha⁻¹ in Seabreeze and Shademark, respectively. Poor seed yields were observed in all strong creeping red fescue cultivars under non-thermal residue management across both years of the study. This may be attributed to an observed reduction in fertile tiller number and seed yield. In addition, percent seed cleanout was increased with non-thermal residue management. In 2004, as stand age increased, thermal residue management resulted in greater seed yields in all cultivars and species, except both cultivars of slender creeping red fescue. Thus, this study provided substantial evidence that thermal residue management has the potential to maintain or increase fine fescue seed yield as stands age as well as to maintain stand profitability. / Graduation date: 2005
49

Long-term effects of tillage and residues on selected soil quality parameters

Callum, Ian R. January 2001 (has links)
A two year study was initiated in 1999 at the Macdonald Campus Farm, on a 2.4 ha site consisting mainly of St-Amable sand to shallow loamy sand (Typic Endoaquent; Humic Gleysol). The site was planted to alfalfa ( Medicago sativa) prior to the establishment of the experimental design and has been planted to corn (Zea mays L.) since 1991. The experiment was set up as a randomized complete block design and consisted of three tillage levels (NT, no-till; RT, reduced tillage; and CT, conventional tillage) and two residue levels (-R, no residues; +R, with residues). This study was performed in order to ascertain the effect of these management systems on soil organic carbon (SOC), particulate organic matter carbon (POM-C), microbial biomass carbon (MBC) levels and soil physical properties. Soil physical properties measured included bulk density, saturated hydraulic conductivity (Ksat), dry and wet aggregate stability, total porosity, macroporosity at -1 kPa and -6 kPa of matric potential, and moisture content. Crop yield was also measured. Results indicated that lower rates of mineralization of POM-C under NT+R in the surface 0--10 cm led to significantly higher SOC at the same depth. There were no significant differences between treatments at the 10--20 cm depth. The MBC was not a good indicator of the differences in soil organic matter levels between treatments. No-till treatments had higher bulk densities, reduced total porosity and macroporosity, increased moisture content, and increased constant-head measured Ksat. Differences in Ksat as measured with the Guelph permeameter, were not significant between treatments, most likely due to increased earthworm activity in NT. There were no significant differences in crop yield in 1999, but a significantly wetter year in 2000 caused lower grain yields in NT+R compared to NT-R and CT+R.
50

The effects of compaction and residue management on soil properties and growth of Eucalyptus grandis at two sites in KwaZulu-Natal, South Africa.

Rietz, Diana Nicolle. January 2010 (has links)
Concerns have been raised over the long-term site productivity (LTSP) of short rotation plantation forests, such as those of Eucalyptus, in South Africa. This is because diminished productivity of long rotation plantations overseas has been found to be generally due to decreases in soil porosity and organic matter. Since soil porosity and organic matter in plantations are mainly affected by soil compaction by harvesting machinery and residue management, the more frequent harvesting of short rotation plantations are of particular concern. Therefore the effects of soil compaction and residue management on soil properties at two sites, one a low organic carbon, sandy soil (Rattray), the other a high organic carbon, clay soil (Shafton) were investigated. The potential of early E. grandis productivity as an indicator of changes in soil properties at these sites was also evaluated. Three different levels of compaction (low, moderate and high) were applied to the sites by three methods of timber extraction, i.e. manual, logger and forwarder loaded by a logger, respectively. Three types of residue management, i.e. broadcast, windrow and residue removal were also applied. A factorial treatment design was used to ensure a resource-efficient study that allowed separation of main and interaction effects. Various soil physical and chemical properties were measured at intervals from before treatment implementation, until approximately 44, and 38 months after treatment implementation at Rattray and Shafton, respectively. Trees were planted at a commercial espacement at both trials, and their growth monitored over the same time period. In addition, to accelerate early growth, negate silvicultural variation, and determine changes in stand productivity with treatments, a portion of the treatment plots were planted at a very high density and harvested when these trees reached canopy closure at about six months of age. Moderate and high compaction treatments at both sites resulted in significant increases in penetrometer soil strength, and often in bulk density. Increasing residue retention decreased the compaction effects of machinery and, generally, increased the total quantity of nutrients contained in residues and soil. Changes in soil bulk density and organic matter as a result of the treatments in turn affected soil water characteristics, generally decreasing plant available water capacity with increasing compaction intensity and residue removal. Tree growth measurements showed that at both sites, tree productivity was negatively affected at some point by increasing compaction. In contrast, residue management only significantly affected tree growth at Shafton, initially increasing and later decreasing growth with residue removal. These variations in tree growth over time in response to treatments are most likely a result of changes in tree characteristics that occurred with age. In addition, trees did not always reflect changes in soil properties that may affect LTSP, most likely because these soil properties had not yet reached levels that would affect tree growth. It was therefore concluded that early tree growth is not always a good indicator of changes in LTSP, and that soil properties are a more reliable indicator. Plantation management practices that lead to soil compaction and residue removals will negatively impact LTSP in South Africa. However, variable responses of the two soils indicate that soils vary in their sensitivity to compaction and residue management. This therefore needs to be quantified across a range of major soil types in the South African forestry industry. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.

Page generated in 0.0815 seconds