1 |
An optimized force field for crystalline phases of resorcinol.Chatchawalsaisin, Jittima, Kendrick, John, Tuble, S.C., Anwar, Jamshed 10 March 2008 (has links)
No / The two known crystalline phases of resorcinol and their phase transitions are of considerable interest. The crystals exhibit pyro- and piezo-electricity and, remarkably, the higher temperature phase is the denser phase. Furthermore, crystals of the phase, by virtue of having a polar axis, have played a crucial role in investigating fundamental issues of crystal growth. We report an optimized force field for the molecular simulation of crystalline phases of resorcinol. The hydroxyl groups of the resorcinol molecule have a torsional degree of freedom and the molecule adopts a different conformation in each of the two phases of resorcinol. The torsional barrier, therefore, was considered to be critical and has been characterized using ab initio methods. Although the atomic partial charges showed some dependence on the molecular conformation, a single set of partial charges was found to be sufficient in describing the electrostatic potential for all conformations. The parameters for the van der Waals interactions were optimized using sensitivity analysis. The proposed force field reproduces not only the static structures but also the stability of the crystalline phases in extended molecular dynamics simulations.
|
2 |
Equilibrium and Kinetic Behavior of the y/β Interphase Boundary in Cu-Zn. AlloysStephens, Donald 12 1900 (has links)
<P> The equilibrium behavior of the boundaries separating
the a and y crystalline phases in the copper zinc alloy system
is investigated by measuring the magnitude, the relative
anisotropy and the temperature dependence of the interfacial
energies. A model, consistent with the interfacial energetics,
is proposed and supported by observations of misfit dislocations
at the boundary. The migration kinetics of the y/β interface
are determined for both dendritic and polyhedral morphologies
and the atomic mechanisms of growth are inferred from the.
internally faulted ordered y precipitates. </p> / Thesis / Doctor of Philosophy (PhD)
|
3 |
Estudo de fases cristalinas no sistema Bi2O3-Tb4O7 / Study of crystalline phases in the system Bi2O3-Tb4O7MATOS, Lucyene Nascimento 25 August 2009 (has links)
Made available in DSpace on 2014-07-29T15:07:11Z (GMT). No. of bitstreams: 1
Dissertacao Lucyene Quimica.pdf: 715050 bytes, checksum: f0341d52acc4a9b488b447ca69a136f7 (MD5)
Previous issue date: 2009-08-25 / A systematic study concerning the crystalline phases in the Bi2O3-rich region of the system Bi2O3-Tb4O7 was made. X-ray powder diffraction method, differential thermal analysis (DTA) and differential scanning calorimetry (DSC) were used in the study of the obtained crystalline phases. Sixteen samples with composition in the range of 4.21 to 33.33 mol% of Tb4O7 were synthesized at 800oC by solid state reaction synthesis. Three distinct crystalline phases were initially identified: a tetragonal phase in the composition range of 4.21 to 5.69 mol% of Tb4O7, a cubic phase for compositions between 6.12 and 29.03 mol% of Tb4O7, and a monoclinic one with 33.33 mol% of Tb4O7. The thermal stability of these compositions was rigorously investigated and the results shown that they are metastable phases in almost all studied range. Under thermal annealing at 500oC, tetragonal phase undergoes decomposition into two phases, monoclinic and rhombohedral ones. The cubic phase, under the same thermal annealing, decomposes partially into a rhombohedral one, except for the interval between 25.0 and 29.1 mol% of Tb4O7. In this case, there was not decomposition under thermal annealing at 500oC during 373 hours, suggesting the cubic phase is stable in this composition range. The monoclinic phase was also tested concerning its thermal stability, but no phase transition was verified. The existence of a possible composition range in the system Bi2O3-Tb4O7 with stable cubic -Bi2O3 type structure is a new and promise result, because of the high ionic conductivity presented by this phase / Um estudo sistemático das fases cristalinas na região mais rica em óxido de bismuto no sistema Bi2O3-Tb4O7 foi realizado. As técnicas de Difração de Raios X pelo método do pó, Análise Térmica Diferencial (DTA) e Calorimetria Diferencial de Varredura (DSC) foram utilizadas no estudo das fases cristalinas obtidas. Dezesseis amostras com composição entre 4,21 e 33,33 mol% de Tb4O7 foram preparadas através de síntese por reação no estado sólido a 800oC. Três fases cristalinas distintas foram inicialmente identificadas: uma tetragonal, presente nas composições entre 4,21 e 5,69 mol% de Tb4O7, uma cúbica, para as composições entre 6,12 e 29,03 mol% de Tb4O7 e uma monoclínica com composição de 33,33 mol% de Tb4O7. Essas composições foram rigorosamente testadas quanto à sua estabilidade térmicas e os resultados indicaram que elas são metaestáveis em quase todo o intervalo investigado. Sob tratamento térmico a 500oC, a fase tetragonal se decompôs em duas fases, uma romboédrica e outra monoclínica. A fase cúbica, sob o mesmo tratamento térmico, se decompôs parcialmente em uma fase romboédrica, exceto para o intervalo compreendido entre 25,0 e 29,1 mol% de Tb4O7. Neste caso não houve decomposição sob tratamento térmico a 500oC durante 373 horas, indicando que a fase cúbica é estável neste intervalo de composição. A fase monoclínica também foi testada quanto à sua estabilidade, não tendo sido verificada nenhuma transição estrutural. A existência de uma possível faixa de composição no sistema Bi2O3-Tb4O7 com estrutura cúbica do tipo -Bi2O3 estável é um resultado inédito e promissor devido ela apresentar elevada condutividade iônica
|
4 |
Tendência de formação vítrea, fases cristalinas solidificadas rapidamente e influência de pequenas adições de Y ou Er no sistema ternário Ni-Nb-Zr / Glass forming ability, crystalline phases rapidly quenched and minor addition effect of Y or Er in the Ni-Nb-Zr ternary systemDeo, Leonardo Pratavieira 03 December 2015 (has links)
Desde a descoberta das ligas amorfas em 1960, os motivos pelos quais algumas ligas podem ser facilmente amorfizadas enquanto outras não podem, não é claramente conhecido, assim não há teoria universal para predizer a habilidade de formação vítrea em sistemas metálicos. No presente trabalho, um critério de seleção foi aplicado ao sistema Ni-Nb-Zr com o objetivo de predizer as melhores estequiometrias com as mais altas tendências de formação vítrea. As habilidades de formação vítrea das ligas foram avaliadas pelo parâmetro térmico γm e os resultados mostraram uma pobre correlação com as predições. Este critério preditivo correlaciona as taxas de resfriamento para a formação vítrea com a instabilidade topológica de estruturas cristalinas, as diferenças médias de função trabalho e densidade eletrônica entre os elementos constituintes da liga. O parâmetro térmico depende de temperaturas características de transformações de fases que podem ser facilmente determinadas a partir de curvas de calorimetria exploratória diferencial dos vidros metálicos. As hipóteses iniciais para explicar a pobre correlação entre os resultados e as predições foram atribuídas às influências de fatores não considerados nos cálculos como os compostos intermetálicos desconhecidos e contaminação por oxigênio. Assim, algumas ligas solidificadas rapidamente foram investigadas com mais rigor com o objetivo de entender a formação das fases cristalinas que competem contra a formação vítrea. As fases cristalinas foram caracterizadas e comparadas com estruturas cristalinas encontradas na literatura como também alguns diagramas de fases. Os diagramas de fases foram utilizados como guias para o melhor entendimento do comportamento de cristalização. Em adição, o critério de seleção também foi utilizado para predizer o melhoramento da tendência de formação vítrea de uma liga do sistema Ni-Nb-Zr com pequenas adições dos elementos terras-raras Y ou Er. É bem conhecido que uma pequena adição de um elemento terra-rara apropriado pode aumentar significativamente a habilidade de formação vítrea de algumas ligas. As tendências de formação vítrea da liga base e das ligas dopadas com terras-raras também foram avaliadas pelo parâmetro térmico γm e os resultados concordaram muito bem com a tendência predita pelo cálculo. As amostras amorfas volumosas foram produzidas por injeção em molde de cobre. A natureza amorfa foi analisada por difração de raios-X e calorimetria exploratória diferencial. As fases cristalinas foram analisadas por microscopia eletrônica de transmissão, microscopia eletrônica de varredura, espectroscopia de raios-X por dispersão em energia e difração de raios-X. A contaminação por oxigênio foi quantificada pelo método de fusão em gás inerte. / Since the discovering of amorphous alloys in 1960, the actual causes of why some alloys can be easily formed into glasses while others cannot, are not clearly known, thus there is no universal theory to predict the glass forming ability in metallic systems. In the present work, a selection criterion was applied in the Ni-Nb-Zr system in order to predict the best stoichiometries with high glass forming ability. The actual glass forming ability of alloys were evaluated by the thermal parameter γm and the results have shown a poor correlation with the predictions. This criterion correlates critical cooling rate for glass formation with topological instability of stable crystalline structures; average work function difference and average electron density difference among the constituent elements of the alloy. The thermal parameter depends on the characteristic temperatures of phase transformations which can be easily measured from differential scanning calorimetry curves of metallic glasses. The initial hypotheses to explain the poor correlation between the experimental results and the predictions concerned with the influence of factors not considered in the calculation, such as unknown intermetallic compounds and oxygen contamination. Thus some rapidly quenched alloys were investigated with more accuracy in order to understand the formation of crystalline phases which compete against the glass formation. We characterized the crystalline phases and compared them to crystalline structures found in literature as well as some phase diagrams. The phase diagrams were used as guides in order to understand the crystallization behavior. In addition, the selection criterion also was used to predict the glass forming ability improvement of a Ni-Nb-Zr alloy with minor additions of rare-earth elements Y or Er. It is well known that the minor amount addition of proper rare-earth elements can greatly enhance the glass forming ability of some glass-forming alloys. The actual glass forming ability of the base alloy and rare-earth doped alloys also were evaluated by the thermal parameter γm and the results agree very well with the tendency predicted by the calculation. Bulk amorphous specimens were produced by injection casting. The amorphous nature was analyzed by X-ray diffraction and differential scanning calorimetry. The crystalline phases were analyzed by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and x-ray diffraction. Oxygen contamination was quantified by the inert gas fusion method.
|
5 |
Tendência de formação vítrea, fases cristalinas solidificadas rapidamente e influência de pequenas adições de Y ou Er no sistema ternário Ni-Nb-Zr / Glass forming ability, crystalline phases rapidly quenched and minor addition effect of Y or Er in the Ni-Nb-Zr ternary systemLeonardo Pratavieira Deo 03 December 2015 (has links)
Desde a descoberta das ligas amorfas em 1960, os motivos pelos quais algumas ligas podem ser facilmente amorfizadas enquanto outras não podem, não é claramente conhecido, assim não há teoria universal para predizer a habilidade de formação vítrea em sistemas metálicos. No presente trabalho, um critério de seleção foi aplicado ao sistema Ni-Nb-Zr com o objetivo de predizer as melhores estequiometrias com as mais altas tendências de formação vítrea. As habilidades de formação vítrea das ligas foram avaliadas pelo parâmetro térmico γm e os resultados mostraram uma pobre correlação com as predições. Este critério preditivo correlaciona as taxas de resfriamento para a formação vítrea com a instabilidade topológica de estruturas cristalinas, as diferenças médias de função trabalho e densidade eletrônica entre os elementos constituintes da liga. O parâmetro térmico depende de temperaturas características de transformações de fases que podem ser facilmente determinadas a partir de curvas de calorimetria exploratória diferencial dos vidros metálicos. As hipóteses iniciais para explicar a pobre correlação entre os resultados e as predições foram atribuídas às influências de fatores não considerados nos cálculos como os compostos intermetálicos desconhecidos e contaminação por oxigênio. Assim, algumas ligas solidificadas rapidamente foram investigadas com mais rigor com o objetivo de entender a formação das fases cristalinas que competem contra a formação vítrea. As fases cristalinas foram caracterizadas e comparadas com estruturas cristalinas encontradas na literatura como também alguns diagramas de fases. Os diagramas de fases foram utilizados como guias para o melhor entendimento do comportamento de cristalização. Em adição, o critério de seleção também foi utilizado para predizer o melhoramento da tendência de formação vítrea de uma liga do sistema Ni-Nb-Zr com pequenas adições dos elementos terras-raras Y ou Er. É bem conhecido que uma pequena adição de um elemento terra-rara apropriado pode aumentar significativamente a habilidade de formação vítrea de algumas ligas. As tendências de formação vítrea da liga base e das ligas dopadas com terras-raras também foram avaliadas pelo parâmetro térmico γm e os resultados concordaram muito bem com a tendência predita pelo cálculo. As amostras amorfas volumosas foram produzidas por injeção em molde de cobre. A natureza amorfa foi analisada por difração de raios-X e calorimetria exploratória diferencial. As fases cristalinas foram analisadas por microscopia eletrônica de transmissão, microscopia eletrônica de varredura, espectroscopia de raios-X por dispersão em energia e difração de raios-X. A contaminação por oxigênio foi quantificada pelo método de fusão em gás inerte. / Since the discovering of amorphous alloys in 1960, the actual causes of why some alloys can be easily formed into glasses while others cannot, are not clearly known, thus there is no universal theory to predict the glass forming ability in metallic systems. In the present work, a selection criterion was applied in the Ni-Nb-Zr system in order to predict the best stoichiometries with high glass forming ability. The actual glass forming ability of alloys were evaluated by the thermal parameter γm and the results have shown a poor correlation with the predictions. This criterion correlates critical cooling rate for glass formation with topological instability of stable crystalline structures; average work function difference and average electron density difference among the constituent elements of the alloy. The thermal parameter depends on the characteristic temperatures of phase transformations which can be easily measured from differential scanning calorimetry curves of metallic glasses. The initial hypotheses to explain the poor correlation between the experimental results and the predictions concerned with the influence of factors not considered in the calculation, such as unknown intermetallic compounds and oxygen contamination. Thus some rapidly quenched alloys were investigated with more accuracy in order to understand the formation of crystalline phases which compete against the glass formation. We characterized the crystalline phases and compared them to crystalline structures found in literature as well as some phase diagrams. The phase diagrams were used as guides in order to understand the crystallization behavior. In addition, the selection criterion also was used to predict the glass forming ability improvement of a Ni-Nb-Zr alloy with minor additions of rare-earth elements Y or Er. It is well known that the minor amount addition of proper rare-earth elements can greatly enhance the glass forming ability of some glass-forming alloys. The actual glass forming ability of the base alloy and rare-earth doped alloys also were evaluated by the thermal parameter γm and the results agree very well with the tendency predicted by the calculation. Bulk amorphous specimens were produced by injection casting. The amorphous nature was analyzed by X-ray diffraction and differential scanning calorimetry. The crystalline phases were analyzed by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and x-ray diffraction. Oxygen contamination was quantified by the inert gas fusion method.
|
6 |
Mesostructured particulate silica materials with tunable pore size : Synthesis, characterization and applicationsSörensen, Malin Helena January 2009 (has links)
Colloidal assemblies of surfactants and polymers in aqueous solutions have been used by human mankind for hundreds of years and they are of great importance in many of our technological processes, such as fabrication of soap and papermaking. Less than two decades ago the idea of using colloidal assemblies as templates of inorganic materials was borne. A new population of materials, referred to as surfactant templated materials, took form. These materials showed extraordinary properties such as monodisperse pore size distribution, large surface areas and pore volumes. The main focus of this thesis has been on synthesis and functionalisation of spherical mesostructured silica particulate materials. In the first part of the work, mesostructured materials with expanded pores have been produced using a well established aerosol-based method as well as the newly developed emulsion and solvent evaporation (ESE) method. Increase in pore size was realized through using Pluronic block copolymer F127 together with a swelling agent poly(propylene glycol) as template. The influence of the swelling agent on pore size expansion was shown to have a roughly linear relationship. Furthermore, the impact of synthesis parameters on internal and exterior morphology has been investigated. Accessibility of the internal pore space, as well as the external surface roughness were shown to be highly dependent on synthesis temperature. Additionally, a very interesting well ordered 3D closed packed (P63/mmc) material was produced using the ionic surfactant C16TAB as template in the ESE method. In the second part of the thesis work, mesoporous spheres with large pore size, having either hydrophilic or hydrophobic surface properties, were used as carriers of an enzyme, lipase. The enzymatic activity of lipase was increased onto the hydrophobic surface, compared to lipase immobilized into the hydrophilic support as well as for lipase free in solution. This effect was probably due to a combination of enhanced hydrophobic interactions preventing denaturation of the enzyme and interfacial activation of the enzyme. This study generated an inorganic carrier material that is a promising candidate for biocatalysis applications. Additionally, mesoporous spheres were used as carriers of a model drug, Ibuprofen, to study the effect of polyelectrolyte multilayers on release properties. However, these layers were shown impermeable independent on pH and the substance was only released from uncoated particles. / <p>QC 20100811</p>
|
7 |
Organic Fluorine in Crystal Engineering : Consequences on Molecular and Supramolecular OrganizationDikundwar, Amol G January 2013 (has links) (PDF)
The thesis entitled “Organic fluorine in crystal engineering: Consequences on molecular and supramolecular organization” consists of six chapters.
The main theme of the thesis is to address the role of substituted fluorine atoms in altering the geometrical and electronic features in organic molecules and its subsequent consequences on crystal packing. The thesis is divided into three parts. Part I deals with compounds that are liquids under ambient conditions, crystal structures of which have been determined by the technique of in situ cryocrystallography. Part II demonstrates the utilization of in situ cryocrystallography to study kinetically trapped metastable crystalline phases that provide information about crystallization pathways. In part III, crystal structures of a series of conformationally flexible molecules are studied to evaluate the consequences of fluorine substitution on the overall molecular conformation. The genesis and stabilization of a particular molecular conformation has been rationalized in terms of variability in intermolecular interactions in the crystalline state.
Part I. In situ cryocrystallography: Probing the solid state structures of ambient condition liquids.
Chapter 1 discusses the crystal structures of benzoyl chloride and its fluorinated analogs. These compounds have been analysed for the propensity of adoption of Cl···O halogen bonded dimers and catemers. The influence of conformational and electronic effects of sequential fluorination on the periphery of the phenyl ring has been quantified in terms of the most positive electrostatic potential, VS,max (corresponding to σ-hole) on the Cl-atom. It is shown that fluorine also exhibits “amphoteric” nature like other heavier halogens, particularly in presence of electron withdrawing groups. Although almost all the derivatives pack through C–H···O, C–H···F, C–H···Cl, Cl···F, C–H···π and π···π interactions, the compound 2,3,5,6-tetrafluorobenzoyl chloride exhibited a not so commonly observed Cl···O halogen bonded catemer. On the other hand, the proposed Cl···O mediated dimer is not observed in any of the structures due to geometrical constraints in the crystal lattice.
Chapter 2 presents the preferences of fluorine to form hydrogen bond (C–H···F) and halogen bonds (X···F; X= Cl, Br, I). Crystal structures of all three isomers of chloro-, bromo-and iodo-fluorobenzene have been probed in order to gain insights into packing interactions preferred by fluorine and other heavier halogens. It has been observed that
homo halogen…halogen (Cl···Cl, Br···Br and I···I) contacts prevail in most of the structures with fluorine being associated with the hydrogen atom forming C–H···F hydrogen bond. The competition between homo and hetero halogen bonds (I···I vs I···F) is evident from the packing polymorphism exhibited by 4-iodo fluorobenzene observed under different cooling protocols. The crystal structures of pentafluoro halo (Cl, Br, I) benzenes were also determined in order to explore the propensity of formation of homo halogen bonds over hetero halogen bonds. Different dimeric and catemeric motifs based on X···F and F···F interactions were observed in these structures.
Chapter 3 focuses on the effect of different cooling protocols in generating newer polymorphs of a given liquid. The third polymorph (C2/c, Z'=6) of phenylacetylene was obtained by sudden quenching of the liquid filled in capillary from a hot water bath (363 K) to the nitrogen bath (< 77 K). Also, different polymorphs were obtained for both 2¬fluoro phenylacetylene (Pna21, Z'=1) and 3-fluoro phenylacetylene (P21/c, Z'=3) when crystallized by sudden quenching in contrast to the generally followed method of slow cooling which results in isostructural forms (P21, Z'=1). The rationale for these kinetically stable “arrested” crystalline configurations is provided in part II of the thesis.
Part II. Tracing crystallization pathways via kinetically captured metastable forms.
Chapter 4 explains the utilization of the new approach of sudden quenching of liquids (detailed in chapter 3) to obtain kinetically stable (metastable) crystalline phases that appear to be closer to the unstructured liquids. Six different examples namely, phenylacetylene, 2-fluorophenylacetylene, 3-fluorophenylacetylene, 4-fluorobenzoyl chloride, 3-chloro fluorobenzene and ethyl chloroformate are discussed in this context. In each case, different polymorphs were obtained when the liquid was cooled slowly (100 K/h) and when quenched sharply in liquid nitrogen. The relationship between these metastable forms and the stable forms (obtained by slow cooling) combined with the mechanistic details of growth of stable forms from metastable forms provides clues about the crystallization pathways.
Part III. Conformational analysis in the solid state: Counterbalance of intermolecular interactions with molecular and crystallographic symmetries.
Chapter 5 describes the crystal structures of a series of conformationally flexible molecules namely, acetylene and diacetylene spaced aryl biscarbonates and biscarbamates. While most of the molecules adopt commonly anticipated anti (transoid) conformation, some adopt unusual cisoid and gauche conformations. It is shown that the unusually twisted conformation of one of the compounds [but-2-yne-bis(2,3,4,5,6¬pentafluorocarbonate)] is stabilized mainly by the extraordinarily short C–H···F intermolecular hydrogen bond. The strength of this rather short C–H···F hydrogen bond has been authenticated by combined single crystal neutron diffraction and X-ray charge density analysis. It has also been shown that the equi-volume relationship of H-and F-atoms (H/F isosterism) can be explored to access various possible conformers of a diacetylene spaced aryl biscarbonate. While biscarbonates show variety of molecular conformations due to absence of robust intermolecular interactions, all the biscarbamates adopt anti conformation where the molecules are linked with antiparallel chains formed with N–H···O=C hydrogen bonds.
Chapter 6 presents a unique example where the commonly encountered crystallographic terms namely, high Z' structure, polymorphism, phase transformation, disorder, isosterism and isostructuralism are witnessed in a single molecular species (parent compound benzoylcarvacryl thiourea and its fluorine substituted analogs). The origin of all these phenomenon has been attributed to the propensity of formation of a planar molecular dimeric chain mediated via N–H···O [R2 (12)] and N–H···S [R2 (8)] dimers.
|
Page generated in 0.1082 seconds