• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 2
  • 2
  • 1
  • Tagged with
  • 43
  • 43
  • 12
  • 11
  • 11
  • 10
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Expression of the grass carp growth hormone: gene in Escherichia coli.

January 1993 (has links)
by Pong Tsang Wai Hai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1993. / Includes bibliographical references (leaves 98-105). / Acknowledgements --- p.i / Abstract --- p.ii / Abbreviations --- p.v / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Biological functions and structure of GH --- p.1 / Chapter 1.2 --- Application of recombinant GH --- p.2 / Chapter 1.3 --- Expression of eukaryotic gene in E.coli --- p.4 / Chapter 1.4 --- Methods for increasing expression of a cloned gene --- p.6 / Chapter 1.4.1 --- Changing the 5' end codons of the cDNA to E.coli preferred codons --- p.6 / Chapter 1.4.2 --- Optimization of distance between SD sequence and the initiation codons --- p.6 / Chapter 1.4.3 --- "Construction of a short ""dummy"" cistron at the 5' end of the cloned gene to improve attachment of ribosome" --- p.7 / Chapter 1.4.4 --- Increasing the copy number of recombinant expression plasmid --- p.8 / Chapter 1.4.5 --- Optimizing high density cell expression --- p.9 / Chapter 1.5 --- Quantitating the expression of cloned gene --- p.10 / Chapter 1.6 --- Inclusion bodies formation --- p.11 / Chapter 1.7 --- The purification of eukaryotic polypeptides synthesized as inclusion bodies --- p.12 / Chapter 1.7.1 --- Solubilization of the inclusion bodies --- p.13 / Chapter 1.7.2 --- Refolding the polypetides and disulfide bond formation --- p.13 / Chapter 1.8 --- Expression of secreted recombinant protein --- p.14 / Chapter 1.9 --- Purpose of present study --- p.15 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- General techniques --- p.16 / Chapter 2.1.1 --- Chemical Synthesis of DNA linkers and primers --- p.16 / Chapter 2.1.2 --- Manipulation of DNA --- p.16 / Chapter 2.1.3 --- Electro-elution of DNA from Agarose Gel --- p.17 / Chapter 2.1.4 --- Preparation of Competent Cells and Transformation --- p.18 / Chapter 2.1.5 --- Screening of the Expressed Clones --- p.19 / Chapter 2.1.6 --- Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) --- p.21 / Chapter 2.1.7 --- Western blot analysis --- p.21 / Chapter 2.2 --- Purification procedures --- p.23 / Chapter 2.2.1 --- Growing up the cells in large scale --- p.23 / Chapter 2.2.2 --- Harvesting of cells from large scale culture --- p.23 / Chapter 2.2.3 --- Sonication of the cells --- p.24 / Chapter 2.2.4 --- Washing of the inclusion body --- p.24 / Chapter 2.2.5 --- Solubilization of the inclusion bodies --- p.25 / Chapter 2.2.6 --- Renaturation of r-gcGH --- p.26 / Chapter 2.2.6.1 --- Step down dilution mehtod --- p.26 / Chapter 2.2.6.2 --- Rapid dilution method --- p.26 / Chapter 2.2.7 --- Separation by reverse phase chromatography --- p.27 / Chapter 2.2.7.1 --- Octadodecylsilica (ODS) column separation --- p.27 / Chapter 2.2.7.2 --- Fast performance Liquid Chromatography(FPLC) --- p.28 / Chapter 2.3 --- Characterization methods --- p.29 / Chapter 2.3.1 --- Radioimmunoassay --- p.29 / Chapter 2.3.1.1 --- Iodination of r-gcGH --- p.29 / Chapter 2.3.1.2 --- Binding assay --- p.31 / Chapter 2.3.2 --- Preparation of anti-r-gcGH serum --- p.32 / Chapter 2.3.3 --- Determination of amino acid composition and N-terminal sequence of r-gcGH --- p.32 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Recombinant plasmids construction --- p.34 / Chapter 3.1.1 --- Basic construction of plasmid producing gcGH in E.coli --- p.34 / Chapter 3.1.2 --- N-terminal modification of gcGH cDNA --- p.38 / Chapter 3.1.3 --- Constuction of a short 'dummy' cistron at the 5'end of gcGH cDNA --- p.40 / Chapter 3.1.4 --- Optimization of distance between ribosomal binding site and initiation codon --- p.42 / Chapter 3.1.5 --- Increasing expression level by increasing plasmid copy number --- p.44 / Chapter 3.1.6 --- Optimizing the high density expression by changing the promoter --- p.48 / Chapter 3.1.7 --- Construction of excretion plasmid for gcGH production from E. coli --- p.48 / Chapter 3.2 --- Quantitation and qualitation of the expressed protein --- p.51 / Chapter 3.3 --- Effect of IPTG on induction of r-gcGH in pp5 --- p.57 / Chapter 3.4 --- Stability of overproducing strain pp5 during continuous culture --- p.59 / Chapter 3.5 --- Stability of overproducing strain ppADH4 during continuous culture --- p.61 / Chapter 3.6 --- "Optimization of culture condition for high level expression strains,pp5 and ppADH4" --- p.64 / Chapter 3.7 --- Purification of r-gcGH --- p.67 / Chapter 3.7.1 --- Distribution of r-gcGH as Soluble and insoluble protein in E. coli --- p.67 / Chapter 3.7.2 --- Isolation and cleaning of the inclusion bodies --- p.69 / Chapter 3.7.3 --- Solubilization and renaturation of r-gcGH --- p.71 / Chapter 3.7.4 --- Purification of r-gcGH by chromatography --- p.73 / Chapter 3.8 --- Characterization of r-gcGH --- p.78 / Chapter 3.8.1 --- Amino acid composition and N-terminal sequence determination --- p.78 / Chapter 3.8.2 --- Immunological property of r-gcGH --- p.81 / Chapter 3.8.3 --- Physical Property of r-gcGH --- p.84 / Chapter 3.8.4 --- Stability of r-gcGH --- p.84 / Chapter 3.9 --- Expression and purification of r-gcGH in excretion vector ppSP14 --- p.86 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- Evaluation of expression strains --- p.88 / Chapter 4.1.1 --- Strain pKgcGH2 --- p.88 / Chapter 4.1.2 --- Strain pKgcGH2-17 --- p.88 / Chapter 4.1.3 --- Strain pSD78 --- p.89 / Chapter 4.1.4 --- "Strains pLl,pL2 and pL4" --- p.90 / Chapter 4.1.5 --- "Strains pp5,pplA,pp2I and pp4Q" --- p.90 / Chapter 4.1.6 --- Strain ppADH4 --- p.91 / Chapter 4.1.7 --- Strain ppSP14 --- p.91 / Chapter 4.2 --- Disulfide bond formation during refolding process --- p.92 / Chapter 4.2.1 --- Renaturaion in the presence of L-arginine and thiol reagent in oxidized form --- p.93 / Chapter 4.2.2 --- Renaturation in the presence of thiol reagent and 3M guanidine hydrochloride --- p.94 / Chapter 4.3 --- Stability of the r-gcGH --- p.94 / Chapter 4.4 --- Further studies --- p.96 / References --- p.98
22

Proteolytic activation of grass carp alcohol dehydrogenase.

January 1997 (has links)
by Lau King-Kwan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 119-142). / ACKNOWLEDGMENTS --- p.I / ABSTRACT --- p.II / ABBREVIATIONS --- p.IV / TABLE OF CONTENTS --- p.V / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter CHAPTER 2 --- PURIFICATION OF ADH-I & ADH-C --- p.25 / Chapter CHAPTER 3 --- "PURIFICATION & IDENTIFICATION OF ""ADH-ACTIVATING"" PROTEASE" --- p.60 / Chapter CHAPTER 4 --- ACTIVATION OF ADH-I BY COMMERCIAL PROTEASE & BY ACETIMIDYLATION --- p.90 / Chapter CHAPTER 5 --- CONCLUSION --- p.114 / REFERENCES --- p.118
23

Type II SOCS family members as intracellular feedback inhibitors for growth hormone and somatolactin in grass carp

Jiang, Xue, 姜雪 January 2013 (has links)
published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
24

Pituitary-specific transcription factor PIT-1 in Chinese grass carp: molecular cloning, functionalcharacterization, and regulation of its transcript expression at thepituitary level

Kwong, Ka-yee., 鄺嘉儀. January 2004 (has links)
published_or_final_version / abstract / toc / Zoology / Master / Master of Philosophy
25

Interactions of pacap and dopamine in regulating growth hormone release from grass carp pituitary cells: functional role of the camp - dependent cascade and ca2+ entrythrough voltage-sensitive ca2+ channels

梁靜茹, Leung, Ching-yu. January 1998 (has links)
published_or_final_version / Zoology / Master / Master of Philosophy
26

Extracellular calcium in dopamine D1-receptor mediated growth hormone release from Chinese grass carp pituitary cells

吳毅賢, Ng, Samuel. January 1997 (has links)
published_or_final_version / Zoology / Master / Master of Philosophy
27

Interactions of pacap and dopamine in regulating growth hormone release from grass carp pituitary cells : functional role of the camp - dependent cascade and ca2+ entry through voltage-sensitive ca2+ channels /

Leung, Ching-yu. January 1998 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1999. / Includes bibliographical references (leaves 68-84).
28

Neuroendocrine regulation and signal transduction for prolactin gene expression in grass carp

Lin, Chengyuan. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 207-262). Also available in print.
29

Novel aspects of grass carp GHR gene regulation

Brown, Gerald Francis. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 192-252). Also available in print.
30

Assessment of Radio-Tagged Grass Carp (Ctenopharnygodon idella) Dispersion, Vegetation, and Temperature Preferences in North Lake Reservoir

Lacewell, Jason (Jason Lawrence) 08 1900 (has links)
Twenty-nine (Group One, June 8,1995) grass carp (Ctenopharyngodon idella) and five (Group Two, April 18, 1996) grass carp were radio-tagged to monitor movement patterns and habitat preferences on North Lake, a 335 hectare multi-use reservoir located in Irving, Texas. Overall fish mean Average Daily Movement (ADM) rates were 49.2 meters/day (during Half One, 6/8/95-11/30/95) and 5.3 meters/day (during Half Two, 12/14/95-6/6/96). Aquatic macrophtye distribution data were obtained. Radio-tagged grass carp were located in Hydrilla verticillata infested areas increasingly throughout the study, however, percent frequency of Hydrilla along 15 transects did not decrease. Radio-transmitters were equipped with temperature-sensors (10-35 Celsius range). Results indicated that radio-tagged grass carp showed no avoidance of areas of North Lake with elevated water temperatures. Radio-tagged grass carp dispersed quickly from stocking point, then moved into littoral areas infested with Hydrilla. After an initial movement period, most fish remained in a localized area.

Page generated in 0.0339 seconds