Spelling suggestions: "subject:"ctenophores"" "subject:"pyrenophora""
1 |
The molecular systematics and population genetics of four coastal ctenophores and scyphozoan jellyfish of the United States Atlantic and Gulf of MexicoBayha, Keith M. January 2005 (has links)
Thesis (Ph.D.)--University of Delaware, 2005 . / Principal faculty advisor: John H. McDonald, Dept. of Biology. Includes bibliographical references.
|
2 |
Das achsenskelet der gorgonidenSchneider, Alfred. January 1905 (has links)
Inaug.-diss.--Bern. / Separat-abdruck aus dem Archiv für naturgeschichte, Berlin, 1905. "Literaturverzeichnis": p. 31-32.
|
3 |
Strain specificity and "selfnon-self" recognition in a tropical marine demosponge, Verongia longissimaKaye, Heather R. January 1979 (has links)
No description available.
|
4 |
Feeding ecology of the ctenophore Mnemiopsis leidyi A. Agassiz (Ctenophora, Lobata) /Sullivan, Lindsay J. January 2007 (has links)
Thesis (Ph.D.)--University of Rhode Island, 2007. / Includes bibliographical references (leaves 251-264).
|
5 |
Strain specificity and "selfnon-self" recognition in a tropical marine demosponge, Verongia longissimaKaye, Heather R. January 1979 (has links)
No description available.
|
6 |
Les cténophores : de leur position dans l'arbre des métazoaires (approche phylogénomique) à leur diversité taxonomique (phylogénie moléculaire et anatomie comparée) / Ctenophores : from their position in the metazoan tree (phylogenomic approach) to their taxonomical diversity (molecular phylogeny and compared anatomy)Simion, Paul 27 November 2014 (has links)
Les cténophores représentent l’un des quatre embranchements animaux extérieurs aux Bilateria. La majoritédes espèces sont planctoniques et gélatineuses, et sont reconnaissables à leurs huit rangées de peignes dont lebattement permet la nage. Leur systématique est encore de nos jours mal comprise. L'anatomie descténophores offre peu de caractères aussi bien pour placer la lignée dans l’arbre des métazoaires, que pourétablir les relations de parenté au sein de l’embranchement et délimiter les espèces, et jusqu’à présent lesdonnées moléculaires n’ont pas permis de résoudre ces problèmes de manière satisfaisante. L’objectif de cetravail de thèse est de contribuer à améliorer notre compréhension de l'évolution des cténophores àdifférentes échelles taxonomiques. A l’échelle des métazoaires, la position phylogénétique des cténophores aété abordée par une approche phylogénomique. Un effort significatif a été réalisé pour améliorerl’échantillonnage taxonomique à travers le séquençage et l’assemblage des transcriptomes de 22 espèces denon-Bilateria (cténophores, cnidaires, spongiaires). Deux jeux de données indépendants ont été analysés, lepremier représentant une mise à jour d’une supermatrice existante de 128 gènes ; le second (4235 gènes)ayant été entièrement construit de novo via un protocole original comportant la mise au point de nouvellesméthodes pour traiter de manière semi-automatisée les principales sources potentielles d’artéfact(contaminations, paralogies, données manquantes). Les résultats contredisent certaines études récentes enmontrant que les spongiaires et non les cténophores représentent le groupe-frère des autres métazoaires. Laposition exacte de ces derniers reste à ce stade incertaine (trois options se présentant suivant les analyses). Al’échelle intra-phylétique, l'analyse d'un jeu de données comprenant les marqueurs ADNr 18S et InternalTranscribed Spacers (ITS), associée à des analyses de gènes dupliqués chez les cténophores et aux analysesphylogénomiques précédentes, a permis de résoudre une grande partie des relations phylogénétiques entre lesordres et les familles de cténophores, tout en permettant de préciser la position de la racine. Enfin, à uneéchelle taxonomique plus fine, une comparaison approfondie entre deux espèces du genre Pleurobrachia aumoyen de marquages immunohistochimiques montre le potentiel de ces techniques comme source denouveaux caractères structuraux « micro-anatomiques » à valeur diagnostique pour la délimitation etl’identification des espèces de cténophores. En conclusion, ce travail se veut une contribution au progrès dela systématique d’un embranchement encore méconnu et d’une grande importance pour la compréhensiondes évènements anciens de l’évolution animale. / Ctenophores are one of the four animal phyla positioned outside from the Bilateria. Most ctenophore species are planktonic and gelatinous, and are easily recognisable by their eight comb rows used for swimming. Ctenophore systematics remains nowadays poorly understood. Anatomical characters do not help much in placing them within the animal tree, and similarly the grounds for establishment of their internal phylogeny as well as delimitation of species are notoriously weak due to a paucity of informative morpho-anatomical characters. Until now, the use of molecular data has failed to improve significantly this situation. The aim of this PhD thesis was to bring a contribution to our understanding of ctenophore evolution at different taxonomic scales. At the metazoan level, the position of ctenophores was addressed using a phylogenomic approach. Taxonomic sampling was significantly improved through sequencing and assembly of transcriptomes of 22 non-bilaterian species (belonging to ctenophores, cnidarians and sponges). Two independent datasets were analysed, one consisting in an update of an existing supermatrix of 128 genes, the other one (4235 genes) having been entirely built de novo, thanks to a newly-devised semi-automated protocol intended to eliminate all major potential causes of artefacts (contaminations, paralogies, missing data). Results clearly contradict recent phylogenomic studies which claimed Ctenophora to be the most early-diverging animal lineage, our analyses instead supporting Porifera as the sister-group to other metazoans. The exact position of ctenophores remains however uncertain at this stage, different conditions of analyses yielding three contradictory hypotheses as open possibilities. At the intra-phyletic level, analyses of a ADNr 18S and ITS (internal transcribed spacers) dataset, together with study of duplicated genes and the results of phylogenomic analyses, allowed resolving most phylogenetic relationships between ctenophore orders and families, including the placement of the ctenophore tree root. Finally, at smaller taxonomic scale, in-depth comparison between two species of the genus Pleurobrachia using immunohistochemistry demonstrates the potential of these techniques for uncovering new structural “micro-anatomical” characters useful for diagnosis and identification of ctenophore species. It is our hope that this work will contribute to improving the systematics of a poorly known phylum of great importance for understanding early animal evolution.
|
7 |
Characterization of unusual gymnamoebae isolated from the Maine environment /Mbugua, Margaret Mbugua Wacera. January 1900 (has links)
Thesis (M.S.)--Marshall University, 2008. / Title from document title page. Includes abstract. Document formatted into pages: contains xiii, 126 p. Includes bibliographical references p. 113-118.
|
8 |
Reconstructing the origins and evolution of immunity with phylogenomicsRedmond, Anthony Kieran January 2018 (has links)
The ability to raise an immune response is essential for all life. Despite this, the evolution of immune systems is poorly understood, as immune genes confound many bioinformatic analyses. This is driven by the rapid rates at which immune genes evolve due to the incessant arms race between host and pathogen often causing standard phylogenetic approaches to fail to accurately model the evolutionary history of immune gene families. Many phylogenetic lessons have been learned since the dawn of the phylogenomics era however, and genome sequences of non-model organisms have now been assembled, permitting improved immune gene detection and hence taxon sampling. In this thesis, I have paired sophisticated phylogenomic tools, including outgroup-free rooting methods, and substitution models that account for structural and functional constraints on protein evolution, with new genome and transcriptome sequence data from taxa that allow inference of the ancestral immune state in vertebrates and animals. Using this approach, I have managed to identify the origins of several key immune genes and families. My results support ancestral complexity in the genes that regulate the functioning of vertebrate adaptive immune systems. My findings also support the presence of a complement system, a front-line innate immune defence, in the ancestor of all animals. I show that this system later underwent a period of major remodelling early in vertebrate evolution, generating novel complement systems in at least three major vertebrate taxa. It is clear from my findings that combining sophisticated phylogenetic models with enriched taxon sampling represents a powerful approach with which to gain understanding of the evolutionary history of the immune system, even in the face of gene loss and the inherent complexity of immune gene evolution.
|
9 |
Seasonal abundance, migrations, and feeding habits of the ctenophore, Pleurobrachia bachei, in Newport Bay, CaliforniaCronk, Gary D. January 1982 (has links)
Thesis (M.A.)--California State University, Fullerton, 1982. / Photocopy of typescript. Includes bibliographical references (leaves 55-57).
|
10 |
Hydromedusae of the Canadian Eastern ArcticBarry, Barbara January 1974 (has links)
No description available.
|
Page generated in 0.0484 seconds