• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 22
  • 16
  • 12
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Examination of Microsporidia Spore Adherence and Host Cell Infection <em>In Vitro</em>.

Southern, Timothy Robert 05 May 2007 (has links) (PDF)
Microsporidia are obligate intracellular pathogens that cause severe disease in immunocompromised humans. While albendazole is the treatment of choice, no therapy exists that effectively treats all forms or causes of human microsporidiosis. Recent studies show that the microsporidian Encephalitozoon intestinalis binds glycosaminoglycans (GAGs) associated with the host cell surface, and that the divalent cations manganese (Mn2+) and magnesium (Mg2+) augment spore adherence to host cells by activating a constituent on the spore surface. These studies also illustrate a direct relationship between spore adherence and host cell infection; inhibition of spore adherence leads to reduced host cell infection while augmentation of spore adherence increases host cell infection. In light of recent studies, microsporidia spore adherence has become a promising target for the development of novel therapeutics to treat or even prevent human microsporidiosis. The goal of this study was to further characterize the molecular mechanisms governing spore adherence by identifying specific constituents on microsporidia spores that participate in spore adherence with host cells. A 40 kDa Encephalitozoon cuniculi host cell binding protein was discovered and identified as ECU01_0820, hereafter known as Encephalitozoon cuniculi microsporidia spore adherence protein (EcMsAP). The gene encoding EcMsAP has multiple heparin-binding motifs and an integrin-binding domain, which are characteristic of proteins that interact with constituents on the cell surface. Immuno-transmission electron microscopy reveals that native EcMsAP is located on the plasma membrane, endospore, exospore, and the anchoring disk of microsporidia spores. Recombinant EcMsAP and antibodies to recombinant EcMsAP both inhibit spore adherence and host cell infection. However, the deletion of heparin-binding motif #1 from the EcMsAP gene results in the loss of ability to inhibit spore adherence and infection. Host cell-binding assays reveal that recombinant EcMsAP binds Vero and CHO cell lines, but exhibits attenuated binding to glycan-deficient CHO cell lines. Finally, biomolecular interactions analysis provides direct evidence that EcMsAP is a glycan binding protein. This study not only identifies a potential microsporidial vaccine candidate, it further supports the assertion that microsporidia spore adherence is a critical step in the host cell infection process.
22

Localization of a Microsporidia ADAM (A Disintegrin and Metalloprotease Domain) Protein and Identification of Potential Binding Partners.

Jolly, Carrie E. 15 December 2007 (has links) (PDF)
Microsporidia are spore-forming, obligate intracellular pathogens typically associated with opportunistic infections in immunocompromised individuals. Treatment options for microsporidia infections in humans are limited and additional research is necessary to create better therapeutic agents. For many pathogenic organisms, adhesion to the host cell surface is a prerequisite for tissue colonization and invasion. Our previous research has demonstrated a direct relationship between adherence of microsporidia spores to the surface of host cells and infectivity in vitro. In an effort to better understand adherence, we have turned our attention to determining what proteins may be involved in this process. Examination of the Encephalitozoon cuniculi genome database revealed a gene encoding a protein with sequence homology to members of the ADAM (a disintegrin and metalloprotease) family of type I transmembrane glycoproteins. The microsporidia ADAM (MADAM) protein is of interest because ADAMs are known to be involved in a variety of biological processes including cell adhesion, proteolysis, cell fusion, and signaling. The objectives for this study were to examine the localization of MADAM, analyze its potential involvement during adherence and/or host cell infection, and to identify potential binding partners or substrates. Through the use of immunoelectron transmission microscopy, we demonstrated that MADAM is localized to the surface exposed exospore, plasma membrane, and the polar sac-anchoring disk complex (a bell-shaped structure at the spore apex involved in the infection process). Location of MADAM within the exospore and polar sac-anchoring disk suggests that MADAM is in a position to facilitate spore adherence or host cell infection. Thus far, we have been unable to conclusively demonstrate that MADAM is involved in either event. Through the use of a yeast two-hybrid system, we were able to identify polar tube protein 3 (PTP3) as a potential binding partner or substrate for the MADAM protein. The interaction between MADAM and PTP3 was confirmed by in vitro co-immunoprecipitation. PTP3 is hypothesized to be involved in the process of polar tube extrusion by stabilizing the interaction between PTP1-PTP2 polymers. Further analysis of the interaction between MADAM and PTP3 may lead to a better understanding of the events that occur during polar tube extrusion.

Page generated in 0.0292 seconds