• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular Transportation in Polymer and Composite Materials: Barrier Performance and Mechanical Property Evaluation

Md Nuruddin (8738436) 21 April 2020 (has links)
<p>Transport of gasses and liquids through polymers and composites is an important factor to be considered when designing a material for structure and packaging applications. For structural engineering applications, more focus has been given to the transportation of water, vapor and organic liquids rather than gases as diffusion of these liquids into the polymers and polymer-based composites can significantly lower service life. In addition, much attention has been given to the leaching of unreacted reactant molecules, solvents, additives, degradation products from the polymers and composites to the atmosphere (water, soil etc.). We studied the transport of volatile organic compounds and water in cured-in-place-pipe (CIPP) (a representative of FRPC) and gas permeability of highly engineered cellulose nanocrystals (CNC) films.</p> <p>Cured-in-place-pipe (CIPP) is a popular technology which uses fiber reinforced polymer composite to repair sanitary sewer, stormwater, and drinking water pipe. The liner is installed in the field and exposed to flowing water immediately after installation (curing of the liner) is done. Curing conditions dictate liner properties as undercured liners can contain unreacted styrene monomers, additives, degradation products. These agents can leach out and enter the environment (soil, water, air). The objective of this work was to investigate the curing behavior, volatile content, thermal stability of steam-cured and UV-cured CIPP liners collected from Indiana and New York installation sites. The liner specimens were also exposed to water and other aggressive environmental conditions (saltwater, concrete pore solution at 50 °C) to explore the leaching of unreacted styrene and other organic chemicals from the liners. The influence of transportation of water, salt solution and pore solution through liners on mechanical and thermo-mechanical properties was also examined to study the durability of the liners. Study suggested that the durability of the liners depends on the curing condition and exposed environment conditions.</p> <p>The function of polymer packaging materials is mainly to inhibit gas and moisture permeation through the films. Cellulose nanocrystals (CNCs) have drawn growing interest for the packaging due to their non-toxicity, abundance in nature, biodegradability and high barrier properties. The objective of this work was to corelate the alignment of CNC with free volume and barrier performance of the film. Furthermore, citric acid (CA) was added to the CNC suspensions with varying quantity to explore the effect of CA on coating quality and barrier performance of CNC coated polypropylene (PP) film. Study revealed that CA addition in CNC suspension can enhance the hydrophobicity and gas barrier performance of coated PP films while retaining the high optical transparency. </p>
2

IMPROVING WORKER SAFETY AND ENVIRONMENTAL PROTECTION BY UNDERSTANDING CHEMICAL EMISSIONS FROM PLASTIC COMPOSITES DURING MANUFACTURE AND USE

Seyedeh-Mahboobeh Teimouri-Sendesi (8755941) 21 June 2022 (has links)
<p>This dissertation focused on cured-in-place-pipe (CIPP) technology, which is being used to repair sewer pipes across the globe. The CIPP process involves the manufacture of a new fiber-reinforced composite plastic pipe inside an existing damaged pipe. By 2022, the global CIPP market will exceed $2.5 billion and constitute 40% of the U.S. pipe rehabilitation market. In recent years, concerns about the type, magnitude, and toxicity of chemical air emissions associated with CIPP installations have markedly increased. CIPP installations in Asia, Europe, Oceania, and North America have been associated with indoor and ambient air contamination incidents, afflicted schools, daycare centers, homes, and offices and prompted building evacuations. This research program was designed to better understand chemical release into the air during CIPP composite manufacture and the human health risks. Principles and techniques from the environmental engineering, air quality, material science, and risk analysis were applied. This dissertation contains three chapters and each chapter is a stand-alone manuscript, with the first chapter already having been published.</p><p>Chapter 1 involved the characterization of chemical emissions for steam-cured CIPP installations in Indiana (IN, sanitary sewer) and California (CA, storm sewer). It was discovered that a complex multiphase mixture of organic vapor, water vapor, and particulate (condensable vapor and partially cured resin) was emitted. Chemicals captured included a variety of hazardous air pollutants, carcinogens, endocrine disrupting compounds, and other chemicals with little toxicity data. The materials captured in California during 4 CIPP installations, when normalized against styrene concentration, exhibited different toxicity towards mouse cells. This toxicity indicated that non-styrene compounds were probably responsible for toxicity. Testing revealed significant and previously unreported worker and public safety chemical risks existed with CIPP installations.</p><p>Chapter 2 describes experiments conducted to determine which CIPP manufacturing conditions (i.e. curing pressure, temperature, time and ventilation) influenced chemical air emissions during and after composite manufacture. During thermal manufacture, approximately 8.87 wt% volatile organic compounds (VOC) was released into the air at standard pressure. For the CIPP styrene-based resin examined, chemical volatilization during manufacture was influenced by pressure, but temperature and heating time did not influence the composition of chemical residual inside the new composite. All cured composites, regardless of temperature or heating time, contained approximately 3 wt% VOC. No statistical difference was found for either: (1) VOC loading across cured composites or (2) styrene emission into the air across cured composites despite different curing temperature and heating times. Styrene was the most abundant compound detected in the composite and in air. High styrene air concentration signals inhibited the author’s ability to determine if other non-styrene compounds were emitted into the air. Short-term ventilation (2 hr) of the new composite reduced styrene air concentration to near zero in 10 min, but styrene levels rebounded when ventilation was halted. Due to the high styrene loading in the cured composite, it is expected that ventilation will only temporarily reduce VOC air levels in pipes, manholes, and other affected spaces.</p><p>Chapter 3 includes inhalation health risk assessment due to chemical emission from CIPPs during manufacture and use. Publicly available worksite data for ultraviolet (UV)-light and steam-CIPP installations were utilized and Monte Carlo simulation was applied. Data-gaps were also identified. Health risks associated with newly manufactured (post-cured) chemical emission from lab scale CIPPs were also evaluated. For CIPP resins and post-cured CIPPs 31 chemicals have been quantified among which many are unique volatile organic chemicals VOCs, but only 8 air testing studies were found. At a steam-CIPP worksite, VOCs were found in a condensed multiphase mixture discharged into air, 4 VOCs were detected in the vapor phase, while only styrene vapor phase results could be used for risk assessment. Worksite styrene levels (1,825 ppm<sub>v</sub>, 1,070 ppm<sub>v</sub>, 220-270 ppm<sub>v</sub>, 140 ppm<sub>v</sub>) have been reported indicating a health risk can exist. Monte Carlo simulation using literature data revealed that for the single UV-CIPP and single steam-CIPP study negligible styrene HQs were found, while unacceptable styrene LECRs% > 10<sup>−4</sup> (i.e. 37-38%) were obtained. Monte Carlo simulation on laboratory data showed that post-cured emissions from the composite cured longer increased the unacceptable styrene LECR (from 17.86% to 21.12%) and HQ (0.95% to 8.04%). Whereas curing the composite at greater temperature reduced the styrene LECR and HQ to 0.89%. and 0, respectively. Ventilation also diminished the acceptable LECR% in all composites but did not reduce the carcinogenic health risk to an acceptable level. Health risk can exist as evidenced by limited air testing data. More studies are needed to examine inhalation health risks associated with the CIPP manufacturing process and newly manufactured plastics.</p>

Page generated in 0.0228 seconds