1 |
Geometria enumerativa via invariantes de Gromov-Witten e mapas estáveis / Enumerative geometry via Gromov-Witten invariants and stable mapsSantos, Renan da Silva January 2015 (has links)
SANTOS, Renan da Silva. Geometria enumerativa via invariantes de Gromov-Witten e mapas estáveis. 2015. 78 f. Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em Matemática, Fortaleza-Ce, 2015 / Submitted by Erivan Almeida (eneiro@bol.com.br) on 2015-05-29T18:19:53Z
No. of bitstreams: 1
2015_dis_rssantos.pdf: 870583 bytes, checksum: f5ebc0c90f1e8aaca61f2be5057d0448 (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-06-01T10:53:48Z (GMT) No. of bitstreams: 1
2015_dis_rssantos.pdf: 870583 bytes, checksum: f5ebc0c90f1e8aaca61f2be5057d0448 (MD5) / Made available in DSpace on 2015-06-01T10:53:49Z (GMT). No. of bitstreams: 1
2015_dis_rssantos.pdf: 870583 bytes, checksum: f5ebc0c90f1e8aaca61f2be5057d0448 (MD5)
Previous issue date: 2015 / In this work, I present the Gromov-Witten theory, quantum cohomology and stable maps and use these tools to obtain some enumerative results. In particular, I proof the Kontsevich formula to projective rational plane curves of degree d. I do an introductory study of Mumford-Knudsen spaces and construct the Kontsevich spaces in order to define gromov-witten invariants. These are used to define the quantum cohomology ring. Next, I apply the general theory to the case of the projective plane and, using the the associativity of the quantum product, I obtain the Kontsevich formula. I also study the boundary of the modulli space of stable maps and describe its Picard group. Following the ideas of Pandharipand, especially the algorithm he developed, I calculate some characteristic numbers of curves in the projective space. / Neste trabalho apresento a teoria de Gromov-Witten, cohomologia quântica e mapas estáveis e uso estas ferramentas para obter alguns resultados enumerativos. Em particular, provo a fórmula de Kontsevich para curvas racionais projetivas planas de grau d. Faço um estudo introdutório dos espaços de Mumford-Knudsen e construo os espaços de Kontsevich a fim de definir os invariantes de Gromov-Witten. Estes são usados para definir o anel de cohomologia quântica. Em seguida, aplico a teoria geral para o caso do plano projetivo e, usando a associatividade do produto quântico, obtenho a fórmula de Kontsevich. Também estudo a fronteira do espaço modulli de mapas estáveis e descrevo o grupo de Picard destes. Com isso, seguindo as ideias de Pandharipand, especialmente o algoritmo por este desenvolvido, calculo alguns números característicos de curvas no espaço projetivo.
|
2 |
Curvas e superfícies dianodais de Cayley-HalphenCesca Filho, Vitalino January 2009 (has links)
Um pencil de Halphen é uma família a um parâmetro de curvas sêxticas planas com nove pontos duplos pré-fixados. Estes nove pontos não podem ser escolhidos ao acaso: fixados oito em posição geral, o nono deve pertencer à curva dianodal de Cayley. Neste trabalho abordamos diferentes métodos de construção da curva dianodal. Estudamos também a superfície dianodal, lugar geométrico de um oitavo ponto duplo isolado de superfícies quárticas de CP³. Estes assuntos são relacionados com as involuçães de Bertini e Kantor. / A Halphen peneil is a one parameter family of plane sextic curves with nine fixed double points. These nine points can't be chosen arbitrarily: fixed eight in general position, the ninth must lie on Cayley's dianodal curve. In this work we approach different methods to obtain the dianodal curve. We aIso study the dianodal surface, the locus of an eighth isolated triple point of quartic surfaces in CP³. These subjects are related with Bertini and Kantor involutions.
|
3 |
Curvas e superfícies dianodais de Cayley-HalphenCesca Filho, Vitalino January 2009 (has links)
Um pencil de Halphen é uma família a um parâmetro de curvas sêxticas planas com nove pontos duplos pré-fixados. Estes nove pontos não podem ser escolhidos ao acaso: fixados oito em posição geral, o nono deve pertencer à curva dianodal de Cayley. Neste trabalho abordamos diferentes métodos de construção da curva dianodal. Estudamos também a superfície dianodal, lugar geométrico de um oitavo ponto duplo isolado de superfícies quárticas de CP³. Estes assuntos são relacionados com as involuçães de Bertini e Kantor. / A Halphen peneil is a one parameter family of plane sextic curves with nine fixed double points. These nine points can't be chosen arbitrarily: fixed eight in general position, the ninth must lie on Cayley's dianodal curve. In this work we approach different methods to obtain the dianodal curve. We aIso study the dianodal surface, the locus of an eighth isolated triple point of quartic surfaces in CP³. These subjects are related with Bertini and Kantor involutions.
|
4 |
Geometria enumerativa via invariantes de Gromov-Witten e mapas estÃveis / Enumerative geometry via Gromov-Witten invariants and stable mapsRenan da Silva Santos 17 March 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Neste trabalho apresento a teoria de Gromov-Witten, cohomologia quÃntica e mapas estÃveis e uso estas ferramentas para obter alguns resultados enumerativos. Em particular, provo a fÃrmula de Kontsevich para curvas racionais projetivas planas de grau d. FaÃo um estudo introdutÃrio dos espaÃos de Mumford-Knudsen e construo os espaÃos de Kontsevich a fim de definir os invariantes de Gromov-Witten. Estes sÃo usados para definir o anel de cohomologia quÃntica. Em seguida, aplico a teoria geral para o caso do plano projetivo e, usando a associatividade do produto quÃntico, obtenho a fÃrmula de Kontsevich. TambÃm estudo a fronteira do espaÃo modulli de mapas estÃveis e descrevo o grupo de Picard destes. Com isso, seguindo as ideias de Pandharipand, especialmente o algoritmo por este desenvolvido, calculo alguns nÃmeros caracterÃsticos de curvas no espaÃo projetivo. / In this work, I present the Gromov-Witten theory, quantum cohomology and stable maps and use these tools to obtain some enumerative results. In particular, I proof the Kontsevich formula to projective rational plane curves of degree d. I do an introductory study of Mumford-Knudsen spaces and construct the Kontsevich spaces in order to define gromov-witten invariants. These are used to define the quantum cohomology ring. Next, I apply the general theory to the case of the projective plane and, using the the associativity of the quantum product, I obtain the Kontsevich formula. I also study the boundary of the modulli space of stable maps and describe its Picard group. Following the ideas of Pandharipand, especially the algorithm he developed, I calculate some characteristic numbers of curves in the projective space.
|
5 |
Curvas e superfícies dianodais de Cayley-HalphenCesca Filho, Vitalino January 2009 (has links)
Um pencil de Halphen é uma família a um parâmetro de curvas sêxticas planas com nove pontos duplos pré-fixados. Estes nove pontos não podem ser escolhidos ao acaso: fixados oito em posição geral, o nono deve pertencer à curva dianodal de Cayley. Neste trabalho abordamos diferentes métodos de construção da curva dianodal. Estudamos também a superfície dianodal, lugar geométrico de um oitavo ponto duplo isolado de superfícies quárticas de CP³. Estes assuntos são relacionados com as involuçães de Bertini e Kantor. / A Halphen peneil is a one parameter family of plane sextic curves with nine fixed double points. These nine points can't be chosen arbitrarily: fixed eight in general position, the ninth must lie on Cayley's dianodal curve. In this work we approach different methods to obtain the dianodal curve. We aIso study the dianodal surface, the locus of an eighth isolated triple point of quartic surfaces in CP³. These subjects are related with Bertini and Kantor involutions.
|
6 |
Curvas nodais maximais via curvas de FermatProfilo, Stanley 26 June 2009 (has links)
Made available in DSpace on 2016-12-23T14:34:48Z (GMT). No. of bitstreams: 1
Dissert_Stanley.pdf: 300904 bytes, checksum: 858e1f7b615889b7f7b8d24956db175b (MD5)
Previous issue date: 2009-06-26 / We study the rational projective nodal plane curves in the projective plane P2(C) by using the Fermat curve Fn : Xn+Y n+Zn = 0. We deal with the theory of dual curves in the projective plane and a special type of group action of Zn x Zn on the Fermat curve and its dual to construct,
for any positive integer n maior ou igual a 3, a rational nodal plane curve of degree equal to n -1. A rational nodal plane curve is a projective rational plane curve (that is, a genus zero curve) that presents as singularities only nodal points, that is, singularities of multiplicity two with distinct tangents. The basic reference is the paper "On Fermat Curves and
Maximal Nodal Curves"by Matsuo OKA published in Michigan Math. Journal, v.53. in 2005. / Estudamos curvas projetivas nodais racionais no plano projetivo P2(C) através das curvas de Fermat Fn : Xn+Y n+Zn = 0. Utilizamos a teoria de curvas duais e um tipo especial de ação do grupo Zn x Zn sobre a curva de Fermat e sua dual para construir, para cada n maior ou igual a 3, uma curva plana nodal racional de grau n -1. Uma curva plana nodal
racional é uma curva projetiva plana racional (isto é, de gênero zero) que possui apenas singularidades do tipo nó. A referência básica é o trabalho de Matsuo OKA "On Fermat Curves and Maximal Nodal Curves" publicado em 2005 no periódico Michigan Math. Journal, v.53.
|
Page generated in 0.0483 seconds