Spelling suggestions: "subject:"curvature india constante"" "subject:"curvature cydia constante""
1 |
HipersuperfÃcies r-mÃnimas com dois fins regularesAntonio Fernando Pereira de Sousa 28 March 2008 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Seja Mn uma hipersuperficie r−minima de Rn+1, ou seja, suponha que M tem curvatura S r+1 identicamente nula. M Ã dita regular se fora de algum compacto M Ã a uniÃo disjunta de um nÃmero finito de fins, cada um deles regular, isto Ã, com
o mesmo comportamento assintÃtico de uma hipersuperfÃcie rotacional. Mostramos que hipersuperfÃcies r-mÃnimas elipticas e mergulhadas no espaÃo Euclidiano Rn+1, 3/2(r + 1) n < 2(r + 1), com dois fins, ambos regulares, sÃo catenÃides
(i.e. hipersuperfÃcies rotacionais). Isto estende resultados prÃvios apresentadospor Schoen [7] e Hounie-Leite [3]. / Let Mn be a r-minimal hypersurface in Rn+1, i.e., suppose M has curvature S r+1 identically zero. M is said regular if out of any compact M is the disjunct union of a finite number of ends, each regular, i.e., with the same assymptotic behavior that a rotational hypersurface. It is shown that embedded, elliptic rminimal hypersurfaces in Euclidean space Rn+1, 3/2 (r + 1) n < 2(r + 1), with
two ends, both regular, are catenoids (i.e. rotational hypersurfaces). This extendsprevious results by Schoen [7] and Hounie-Leite [3].
|
2 |
Uniqueness for hypersurfaces immersed on riemannian and lorentzian spaces: results, examples and counter-examples / Unicidade de hipersuperfÃcies imersas em espaÃos riemannianos e lorentzianos: resultados, exemplos e contra-exemplosEraldo Almeida Lima JÃnior 24 April 2015 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / In this work we present uniqueness results for constant mean curvature hypersurfaces in Riemannian and Lorentzian products. We dealt with product whose fiber has sectional
curvature bounded from below. We considered a certain control in the norm of the gradient of the height function by the norm of the second fundamental form in order to obtain that such a surface is slice. We also obtained uniqueness through integrability conditions in the gradient of the height function. We also presented an extension of a lemma due to Nishikawa which was used to prove the results for the case of maximal surfaces, that is, with zero mean curvature. We have utilized as an essential tool, in the prove of the results, the generalized Omori-Yau maximum principle in one of the latest versions. In the end, we present examples showing and justifying the necessity of required hypothesis in the results. / Neste trabalho, apresentamos resultados de unicidade para hipersuperfÃcies de curvatura mÃdia constante, tanto em um produto Riemanniano como Lorentziano. Tratamos de produtos cuja fibra tenha curvatura seccional limitada por baixo. Para isto, consideramosum certo controle na norma do gradiente da funÃÃo altura pela norma da segunda forma fundamental com o objetivo de obter que tal hipersuperfÃcie deve ser um slice, i.e., uma "fatia". TambÃm obtemos a unicidade atravÃs de condiÃÃes de integrabilidade no gradiente da funÃÃo altura. Apresentamos uma extensÃo de um lema devido a Nishikawa que utilizamos para provar os resultados no caso das superfÃcies mÃximas, ou seja, aquelas com curvatura mÃdia nula. Utilizamos como ferramenta essencial, na prova dos resultados, o princÃpio do mÃximo generalizado de Omori-Yau em suas versÃes mais atuais. Finalmente, apresentamos exemplos que justificam a necessidade das hipÃteses exigidas nos resultados.
|
3 |
Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial / Rigidity of the contact surfaces and characterization of Riemannian manifolds carrying a conformal vector fields or some special metricJosà Nazareno Vieira Gomes 29 June 2012 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / FundaÃÃo de Amparo à Pesquisa do Estado do Amazonas / Esta tese està composta de quatro partes distintas. Na primeira parte, vamos dar uma nova caracterizaÃÃo da esfera euclidiana como a Ãnica variedade Riemanniana compacta com curvatura escalar constante e admitindo um campo de vetores conforme nÃo trivial que à tambÃm Ricci conforme.
Na segunda parte, provaremos algumas propriedades dos quase sÃlitons de Ricci, as quais permitem estabelecer condiÃÃes de rigidez desses objetos, bem como caracterizar as estruturas de quase sÃlitons de Ricci gradiente na
esfera euclidiana. ImersÃes isomÃtricas tambÃm serÃo consideradas; classificaremos os quase sÃlitons de Ricci imersos em formas espaciais, atravÃs de uma condiÃÃo algÃbrica sobre a funÃÃo sÃliton. AlÃm disso, vamos caracterizar, atravÃs de uma condiÃÃo sobre o operador de umbilicidade, as hipersuperfÃcies n-dimensionais de uma forma espacial, com curvatura mÃdia constante, tendo duas curvaturas principais distintas e com multiplicidades p e n - p. Na terceira parte, provaremos um resultado de rigidez e algumas fÃrmulas integrais para uma mÃtrica m-quasi-Einstein generalizada compacta.
Na Ãltima parte, vamos apresentar uma relaÃÃo entre a curvatura gaussiana e o Ãngulo de contato de superfÃcies imersas na esfera euclidiana tridimensional,a qual permite concluir que a superfÃcie à plana, se o Ãngulo de contato for
constante. AlÃm disso, deduziremos que o toro de Clifford à a Ãnica superfÃcie compacta com curvatura mÃdia constante tendo tal propriedade. / This thesis is composed of four distinct parts. In the first part, we shall give a new characterization of the Euclidean sphere as the only compact Riemannian manifold with constant scalar curvature carrying a conformal vector
eld non-trivial which is also Ricci conformal.
In the second part, we shall prove some properties of almost Ricci solitons, which allow us to establish conditions for rigidity of these objects, as well
as characterize the structures of gradient almost Ricci soliton in Euclidean sphere. Isometric immersions also will be considered, we shall classify almost Ricci solitons immersed in space forms, through algebraic condition on soliton function. Furthermore, we characterize under a condition of the umbilicity
operator, n-dimensional hypersurfaces in a space form with constant mean curvature, admitting two distinct principal curvatures with multiplicities p and n - p. In the third part, we prove a result of rigidity and some integral
formulae for a compact generalized m-quasi-Einstein metric.
In the last part, we present a relation between the Gaussian curvature and the contact angle of surfaces immersed in Euclidean three-dimensional sphere,
which allows us to conclude that such a surface is
at provided its contact angle is constant. Moreover, we deduce that Clifford tori are the unique compact
surfaces with constant mean curvature having such property.
|
Page generated in 0.374 seconds