• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intrusion Attack & Anomaly Detection in IoT Using Honeypots

Kulle, Linus January 2020 (has links)
This thesis is presented as an artifact of a project conducted at MalmöUniversity IoTaP LABS. The Internet of Things (IoT) is a growing field and its usehas been adopted in many aspects of our daily lives, which has led todigitalization and the creation of smart IoT ecosystems. However, with the rapidadoption of IoT, little or no focus has been put on the security implications,device proliferations and its advancements. This thesis takes a step forward toexplore the usefulness of implementing a security mechanism that canproactively be used to aid understanding attacker behaviour in an IoTenvironment. To achieve this, this thesis has outlined a number of objectivesthat ranges from how to create a deliberate vulnerability by using honeypots inorder to lure attacker’s in order to study their modus operandi. Furthermore,an Intrusion Attack Detection (Model) has been constructed that has aided withthis implementation. The IAD model, has been successfully implemented withthe help of interaction and dependence of key modules that have allowedhoneypots to be executed in a controlled IoT environment. Detailed descriptionsregarding the technologies that have been used in this thesis have also beenexplored to a greater extent. On the same note, the implemented system withthe help of an attack scenario allowed an attacker to access the system andcircumnavigate throughout the camouflaged network, thereafter, the attacker’sfootprints are mapped based on the mode of attack. Consequently, given thatthis implementation has been conducted in MAU environment, the results thathave been generated as a result of this implementations have been reportedcorrectly. Eventually, based on the results that have been generated by thesystem, it is worth to note that the research questions and the objective posedby the thesis have been met.

Page generated in 0.0275 seconds