1 |
A influência da variação da umidade pós-compactação no comportamento mecânico de solos de rodovias do interior paulista / The influence of post-compaction moisture content variation on the mechanical behavior of soils from São Paulo state pavementsTakeda, Marcelo de Castro 22 May 2006 (has links)
Na construção de rodovias, as condições de umidade e densidade observadas na compactação são, geralmente, próximas daquelas correspondentes ao pico da curva de compactação obtida no ensaio Proctor. É sabido que variações ambientais no decorrer da vida do pavimento podem alterar, de maneira significativa, a umidade do subleito e dos seus componentes e assim, as suas propriedades resilientes. O objetivo principal desta pesquisa é avaliar a influência da variação da umidade pós-compactação no módulo de resiliência de solos de rodovias do interior paulista a partir de resultados de ensaios de laboratório. Foram coletados e caracterizados setenta e três solos, e, dentre estes, selecionados trinta para a etapa de estudo da variação da umidade pós-compactação, após a realização de ensaios MCT, difração de raios-x, microscopia eletrônica de varredura e azul de metileno para determinação da gênese. Os solos selecionados apresentam características distintas quanto à gênese, sendo metade laterítico e metade não-laterítico. Os corpos-de-prova foram compactados na umidade ótima e submetidos a processos de secagem e umedecimento e, posteriormente, realizados ensaios triaxiais cíclicos. Os resultados permitiram a modelagem do 'M IND.R' em função do estado de tensão para diferentes umidades e a avaliação da competência de alguns modelos matemáticos nesta representação. Estudou-se a influência da gênese e da granulometria sobre o valor do 'M IND.R' e avaliou-se a conseqüência da variação da umidade sobre este para solos lateríticos e não-lateríticos. Determinou-se uma expressão para estimar a variação do 'M IND.R' com a variação da umidade a partir do parâmetro k1, independentemente do estado de tensão. Pesquisou-se a existência de relações entre os parâmetros de regressão do modelo composto e os resultados dos ensaios de compressão simples e as propriedades físicas dos solos, de forma a permitir a estimativa do módulo de resiliência a partir do resultado de ensaios mais simples. Investigou-se a possibilidade de se utilizar as relações entre a variação do módulo tangente inicial com a variação da umidade para estimar os efeitos sobre o 'M IND.R'. / On road construction, the field compaction conditions are usually close to those determined from Proctor tests. Environmental variations may lead to changes in the pavement moisture and also changing its resilient properties. The main objective of this research is to study the influence of post-compaction moisture content variation on the resilient modulus of soils from São Paulo state pavements, using laboratory tests. To accomplish this objective, seventy three soils samples were collected and characterized. Among them, thirty samples were selected, after four different tests were carried out to determine the soils genesis, to study the post-compaction moisture content variation. Half of these selected soils are lateritic ones, and the other half are non-lateritic soils. The specimens were compacted at optimum moisture content and submitted to drying and moistening processes prior cyclic triaxial test to be carried out. The results allowed the resilient modulus modeling as a function at the stress state and the performance evaluation of five different models. The genesis and grain size distribution influence on the resilient modulus values were studied. The effects of moisture content variations on lateritic and non-lateritic soils were investigated. An expression to estimate the resilient modulus variations with the moisture variations was determined, independently of the stress state. The existence of relations of the compound model regression parameters with the results of unconfined compressive strength and soil properties were studied. The possibility of using the initial tangent modulus variations with the moisture variations to estimate the effects on the resilient modulus were also investigated.
|
2 |
A influência da variação da umidade pós-compactação no comportamento mecânico de solos de rodovias do interior paulista / The influence of post-compaction moisture content variation on the mechanical behavior of soils from São Paulo state pavementsMarcelo de Castro Takeda 22 May 2006 (has links)
Na construção de rodovias, as condições de umidade e densidade observadas na compactação são, geralmente, próximas daquelas correspondentes ao pico da curva de compactação obtida no ensaio Proctor. É sabido que variações ambientais no decorrer da vida do pavimento podem alterar, de maneira significativa, a umidade do subleito e dos seus componentes e assim, as suas propriedades resilientes. O objetivo principal desta pesquisa é avaliar a influência da variação da umidade pós-compactação no módulo de resiliência de solos de rodovias do interior paulista a partir de resultados de ensaios de laboratório. Foram coletados e caracterizados setenta e três solos, e, dentre estes, selecionados trinta para a etapa de estudo da variação da umidade pós-compactação, após a realização de ensaios MCT, difração de raios-x, microscopia eletrônica de varredura e azul de metileno para determinação da gênese. Os solos selecionados apresentam características distintas quanto à gênese, sendo metade laterítico e metade não-laterítico. Os corpos-de-prova foram compactados na umidade ótima e submetidos a processos de secagem e umedecimento e, posteriormente, realizados ensaios triaxiais cíclicos. Os resultados permitiram a modelagem do 'M IND.R' em função do estado de tensão para diferentes umidades e a avaliação da competência de alguns modelos matemáticos nesta representação. Estudou-se a influência da gênese e da granulometria sobre o valor do 'M IND.R' e avaliou-se a conseqüência da variação da umidade sobre este para solos lateríticos e não-lateríticos. Determinou-se uma expressão para estimar a variação do 'M IND.R' com a variação da umidade a partir do parâmetro k1, independentemente do estado de tensão. Pesquisou-se a existência de relações entre os parâmetros de regressão do modelo composto e os resultados dos ensaios de compressão simples e as propriedades físicas dos solos, de forma a permitir a estimativa do módulo de resiliência a partir do resultado de ensaios mais simples. Investigou-se a possibilidade de se utilizar as relações entre a variação do módulo tangente inicial com a variação da umidade para estimar os efeitos sobre o 'M IND.R'. / On road construction, the field compaction conditions are usually close to those determined from Proctor tests. Environmental variations may lead to changes in the pavement moisture and also changing its resilient properties. The main objective of this research is to study the influence of post-compaction moisture content variation on the resilient modulus of soils from São Paulo state pavements, using laboratory tests. To accomplish this objective, seventy three soils samples were collected and characterized. Among them, thirty samples were selected, after four different tests were carried out to determine the soils genesis, to study the post-compaction moisture content variation. Half of these selected soils are lateritic ones, and the other half are non-lateritic soils. The specimens were compacted at optimum moisture content and submitted to drying and moistening processes prior cyclic triaxial test to be carried out. The results allowed the resilient modulus modeling as a function at the stress state and the performance evaluation of five different models. The genesis and grain size distribution influence on the resilient modulus values were studied. The effects of moisture content variations on lateritic and non-lateritic soils were investigated. An expression to estimate the resilient modulus variations with the moisture variations was determined, independently of the stress state. The existence of relations of the compound model regression parameters with the results of unconfined compressive strength and soil properties were studied. The possibility of using the initial tangent modulus variations with the moisture variations to estimate the effects on the resilient modulus were also investigated.
|
3 |
Response of Geosynthetic Reinforced Granular Bases Under Repeated LoadingSuku, Lekshmi January 2016 (has links) (PDF)
Key factors that influence the design of paved and unpaved roads are the strength and stiffness of the pavement layers. Among other factors, the strength of pavements depends on the thickness and quality of the aggregates used in the pavement base layer. In India and many other countries, there is a high demand for good quality aggregates and the availability of aggregate resources is limited. There is a need for the development of sustainable construction methods which can handle aggregate requirements with least available resources and provide good performance. Hence it is imperative to strive for alternatives to achieve improved quality of pavements using supplementary potential materials and methods. The strength of pavement increases with increase in the thickness of the base which has a direct implication on construction cost whereas decreasing the thickness of the base makes it weak which results in low load bearing capacity especially for unpaved roads. The use of different types of geosynthetics like geocell and geogrid are a potential and reliable solution for the lack of availability of aggregates and studies are conducted in this direction. To better understand the performance of any geosynthetically reinforced base layers, it is essential to characterize the pavement material by studying the behavior of these materials under static as well as repeated loading. For unpaved roads, the base layer, made of granular aggregates plays a crucial role in the reduction of permanent deformation of the pavements. The resilient modulus (Mr) of these materials is a key parameter for predicting the structural response of pavements and for characterizing materials in pavement design and evaluation.
Usually, during the design of flexible pavements, pavement materials are treated as homogeneous and isotropic. The use of rollers in the field during pavement construction leads to a higher compaction of material in the vertical direction which introduces stress-induced anisotropy in the base material. The effect of stress-induced anisotropy on the properties of the granular material is studied and discussed in the first part of the research by conducting repeated load triaxial tests. Isotropic consolidated and anisotropically consolidated samples were prepared to investigate the behavior of base materials under stress induced anisotropic conditions. An additional axial load was applied on the isotropically consolidated sample to create anisotropically consolidated sample. The axial loading was provided such that the stress ratio (σ1/σ3), during anisotropic consolidation was kept constant for all the tests at different confining pressures. The effect of repeated loading on the permanent deformation and the resilient modulus for both isotropically and anisotropically consolidated samples, at different confining pressure and loading conditions, are discussed. The behavior of both anisotropically and isotropically consolidated samples has been explained using the record of the excess pore pressures generated during the experiments. The experimental studies show that the permanent strains measured in the vertical direction of the anisotropically consolidated samples are less compared to the results obtained for isotropically consolidated samples. The resilient moduli of the anisotropically consolidated samples were also observed to be higher than that of the isotropically consolidated sample. The study conducted on the pore pressure of both the samples explains better performance of the anisotropically consolidated samples. The studies showed that the isotropically consolidated samples showed higher pore pressures compared to the anisotropically consolidated specimens.
Another factor which influences the resilient modulus of the pavement materials is the geosynthetic reinforcement. Geocell and geogrid reinforced triaxial samples were prepared to study the effect of reinforcement in the resilient modulus of the base materials. From the literature, it can be seen that most of the research in the triaxial testing equipment were carried out in the non-destructive range of confining pressure and deviatoric stress. Several studies have been conducted by the researchers to visualize the pavement response in the elastic range. However, the studies in the plastic creep range and incremental collapse range were highly limited. In the current study, testing is carried out on the triaxial samples for two different stress ranges. In the first sections, loading was applied in the elastic and elastic shakedown range as per AASTHO T-307. For various loading sequences, a comparative analysis has been done for the resilient modulus of the geogrid and geocell. In the next section, the loading was applied on the sample in the plastic shakedown range and incremental collapse range. The results of the permanent strains and resilient modulus of the sections are compared with the corresponding results of the unreinforced section. In the plastic shakedown and incremental collapse range also the permanent strains of reinforced samples were less than those observed in the unreinforced section.
The performance of geosynthetically reinforced pavement layers can be better understood by studying the samples prepared under realistic field conditions. In the case of triaxial experiments the sample size is very less compared to the field conditions and the effect of other pavement layers on the performance of the base layers cannot be studied on triaxial samples. Samples were prepared in the laboratory by modeling the pavement sections in a cuboidal tank, in which different pavement layers are laid one over the other, and a static loading or repeated loading is applied to overcome the bottleneck of small sample size in the triaxial setup. The experiments were conducted on the unreinforced section; geocell reinforced section and geogrid reinforced section placed above strong and weak subgrade. The results of the study are examined regarding the resilient deformation, permanent deformation, pressure distribution and strain measurements for different thicknesses of base layers under repeated loading. The initial parts of the study present the results of experiments and analysis of the results to understand the behavior of geocell reinforced granular base during repeated loading.
In this study, an attempt is made to understand the various factors which influence the behavior of geocell reinforced granular base under repeated loading by conducting plate load tests. The loads applied on the pavements are much higher than the standard axle loading used for the design of pavements. High pressure was applied on all the test sections to simulate these higher loading conditions in the field. The optimum width and height of the geocell to be provided, to get maximum reduction in permanent deformation is studied in detail. The effect of resilient deformation of reinforced and unreinforced base layers is quantified by calculating the resilient modulus of these layers. The studies showed that the geocell reinforcement was effective in reducing the permanent and resilient deformations of base layer when compared to the unreinforced samples. The resilient modulus calculated was higher for the reinforced sample with half of the thickness of the unreinforced sample. The effect of reinforcement in the stress distribution within the base layer is also studied by measuring the pressures at different depths of the base layer. The results showed that the pressure getting transferred to the subgrade level was much lower in the case of geocell reinforced base layer. The ultimate aim of any pavement design method is to reduce the distress in the subgrade level and thus leading to increased life of pavements. Pressures at the subgrade level for reinforced and unreinforced sections are studied in detail, the main parameter under study being the stress distribution angle, to investigate the distress in the subgrade level. It was observed that the geocell reinforced sample showed higher stress distribution angle when compared to its unreinforced counterpart. Another important factor that has to be studied is the strains at the subgrade level since it is the governing factor of causing rutting in the pavements. From the experiments conducted in the study, it was shown that the reinforcement is very effective in reducing the strains at the top of subgrades. The implications of the current study are brought out in terms of improved pavement performance as the carbon emission reductions. It is important to analyze the performance of reinforced section under realistic field conditions. To do that experiment were conducted on reinforced and unreinforced base layers placed on top of weak subgrade material. The study showed that the reinforcements are effective in reducing the deformations under weak subgrade conditions also but not as effective as it was under strong subgrade case. The experimental results were then validated with the two-dimensional mechanistic-empirical model for geocell reinforced unpaved roads for predicting the performance of pavements under a significant number of cycles. The modified permanent deformation model which incorporates the triaxial test results and strains measured directly from the base sections were used to model and validate.
Plate load experiments were also conducted on base layers reinforced with geogrid to understand the behavior of these reinforced samples under repeated loading. Several factors like the width of the geogrid to be provided and the depth of placing the geogrid in the base layer were studied in detail to achieve maximum reduction in deformations. Permanent and resilient deformation studies were carried out for both reinforced and unreinforced sections of varying thicknesses, and a comparison was made to understand the effect of reinforcement. The geogrid reinforcement could effectively reduce the permanent and resilient deformations when compared to the unreinforced sections. A study was also carried out on the resilient modulus, which explained the better performance of the geogrid reinforced samples by showing higher resilient modulus for reinforced samples than the unreinforced specimens. The performance of the geogrid reinforced base layers was further verified by studying the pressure distribution at the subgrade level and by calculating the stress distribution angle corresponding to the reinforced and unreinforced samples. The strains at the subgrade level were also studied and compared with the unreinforced sample which showed a better performance of geogrid reinforced samples. The results from the strain gauges fixed in the geogrid were further used to model and validate the permanent deformation model. Experiments were conducted on geogrid-reinforced base layer placed above weak subgrade conditions. The results showed that the reinforcement was effective in reducing the deformations under weak subgrade conditions also. Apart from conducting the laboratory studies, experimental results were numerically modeled to accurately back-calculate the resilient moduli of the layers used in the study. 3D numerical modeling of the unreinforced and honeycomb shaped geocell reinforced layers were carried out using finite element package of ANSYS. The subgrade layer, geocell material, and infill material were modeled with different material models to match the real case scenario. The modeling was done for
both static and repeated load conditions. The material properties were changed in a systematic fashion until the vertical deformations of the loading plate matched with the corresponding values measured during the experiment. The experimental study indicates that the geocell reinforcement distributes the load in the lateral direction to a relatively shallow depth when compared to the unreinforced section. Numerical modeling further strengthened the results of the experimental studies since the modeling results were in sync with the experimental data.
|
Page generated in 0.0561 seconds