• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 30
  • 18
  • 14
  • 13
  • 12
  • 12
  • 12
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cytochrome P450-3A4/copper-poly(propylene imine)- polypyrrole star co-polymer Nanobiosensor system for delavirdine – a non-nucleoside reverse transcriptase inhibitor HIV drug

Ntshongontshi, Nomaphelo January 2014 (has links)
>Magister Scientiae - MSc / HIV and AIDS are among the world's pandemics that pose serious concern to almost every individual in the world. With the current level of availability of anti-retroviral (ARV) drugs and the ease of accessibility of treatment in many countries such as South Africa, the disease can be controlled by suppressing the viral load of an infected individual. These anti HIV drugs such as delavirdine are metabolised by enzymes which are found in the liver microsomes, particularly those of the cytochrome P450 family. Due to the fact that the metabolic rate of a patient determines the effect of the drug, the drug could either have a beneficial or an adverse effect once it is administered. It is therefore imperative that the metabolic profile of a patient is determined at point-of-care is necessary for proper dosing of the ARV drugs. In this project a nanobiosensor system was devised and used for the determination of the metabolism of delavirdine, a non-nucleoside reverse transcriptase inhibitor (NNRTI) ARV drug. The nanobiosensor was prepared by the entrapment of the isoenzyme CYP3A4 into a pre-formed electro active carrier matrice consisting of a dendrimeric copper generation-2 poly (propylene imine)-co-polypyrrole star copolymer (Cu(G2PPI)-co-PPy). The metallo-dendrimer was used as a host for the enzyme and provided thenecessary bio-compatible environment that allowed the direct transfer of electrons between the enzyme's active centres and platinum electrode surface. Copper was the choice of metal used in the study due to its properties. Copper is a malleable, ductile and a good conductor of both heat and electricity. It is a better conductor than most metals. Silver which also belongs to group 1b in the periodic table is a better electrical conductor than copper but copper has better corrosion resistance and is a more abundant and hence it is a cheaper material to use. Cu(G2PPI)-co-PPy was prepared by the incorporation of the copper metal into the G2PPI and the electropolymerization of pyrrole onto the Cu(G2PPI). The incorporation of Cu into G2PPI was determined by FTIR which did not show the presence of the Cu but showed an increase in the intensities of the peaks after the incorporation. The surface morphology of Cu (G2PPI) was confirmed by the use of HRSEM which showed a difference in the surface morphology of the dendrimer moiety with the addition of the copper metal. The HRSEM images after Cu incorporation resulted in the change from rough surface to smooth surface with open cavities which were essential for the entrapment of the biological systems (CYP3A4). Energy dispersive spectrometry (EDS) and HRTEM were used to confirm the presence of spherically shaped copper nanoparticles in the Cu (G2PPI) and were found to have a size distribution of 12-17 nm with an average particle size of 15nm. The star copolymer (Cu(G2PPI)-co-PPy) was characterised using cyclic voltammetrywhere it was confirmed that the material was electroactive and conducting due to electron movement along the polymer chain. A diffusion co-efficient (D₀) value of 8.64 x 10⁻⁵ cm²/s was determined for the material indicating a slow electron transfer kinetics within the diffusion layer. The constructed nanobiosensor was developed using copper poly (propylene imine) – polypyrrole star copolymer, bovine serum albumin and glutaraldehyde coupled to the enzyme CYP3A4. The resultant nanobiosensor parameters include a dynamic linear range (DLR) of 0.01-0.06 nM, a limit of detection (LOD) of 0.025 nM and a sensitivity value of0.379 μA/nM.
2

Construction of an enzyme-free electrochemical sensor based on Ag-Fe2O3/POM/RGO novel nanocomposite for hydrogen peroxide detection

Nqakala, Noniko Civilized January 2018 (has links)
>Magister Scientiae - MSc / The motivation to determine H2O2 lies in the fact that this chemical species plays a crucial role in diverse fields of practise such as cosmetic, food, diagnostic, pharmaceutical, clinical and environmental protection industries. Several methods such as chromatography, colorimetry, titrimetry and spectrophotometry have been developed for its detection. However, these methods are known to manifest underlying disadvantages such as high cost, time consuming, instability and complicated immobilization procedures. In this present study an enzyme-less electrochemical sensor based on Ag-Fe2O3/POM/RGO nanocomposite (POM stands for polyoxometalate and RGO stands for reduced graphene oxide) was successfully synthesised via a hydrothermal method and a photochemical reduction method for the detection of hydrogen peroxide (H2O2).
3

Amperometric biosensor systems prepared on poly (aniline-ferrocenium hexafluorophosphate) composites doped with poly(vinyl sulfonic acid sodium salt)

Ndangili, Peter Munyao January 2008 (has links)
Magister Scientiae - MSc / The main hypothesis in this study is the development of a nanocomposite mediated amperometric biosensor for detection of hydrogen peroxide. The aim is to combine the electrochemical properties of both polyaniline and ferrocenium hexafluorophosphate into highly conductive nano composites capable of exhibiting electrochemistry in non acidic media; shuttling electrons between HRP and GCE for biosensor applications. / South Africa
4

Silica Coated Core-Shell Quantum Dot-based Electro-Immunosensor for Interferon Gamma TB Disease Biomarker

Mini, Sixolile January 2020 (has links)
>Magister Scientiae - MSc / Tuberculosis (TB) is a disease that results from infection by Mycobacterium tuberculosis, which is regarded the most common infecting organism. TB has killed countless numbers of people particularly in underdeveloped countries. TB bacteria can remain inactive or in dormant state for years without causing symptoms or spreading to other subjects, but as soon as the immune system of the host becomes weakened, the bacteria become active and infect mainly the lungs along with other parts of body. TB cases are further aggravated by other illnesses that affect the immune system, such as human immune virus (HIV), which is very prevalent in resource-poor countries. Interferon-gamma (IFN-γ) is a TB biomarker that has found to have all the qualities that are needed to help and cure Tuberculosis disease. Early diagnosis and treatment are essential measures for effectively controlling the disease. Traditional microbial culture-based tests are the most common methodologies currently used. Usually, these methods involve cell culture, cell counts, and cell enrichment, but this process is time-consuming and laborious, especially for the slow-growing bacteria like M. tuberculosis. Sputum smear is one of the methods currently used to detect acid fast bacilli (AFB) in clinical specimens or fluorescent staining. It is a cost-effective tool for diagnosing patients with TB and to monitor the progress of treatment especially in developing countries. The traditional method of inoculating solid medium such as Lowerstein-Jensen (L-J) or 7H10/7H11 media is also used currently it is slow and takes 6-8 weeks of incubation to diagnose the infection and further more time to determine the susceptibility patterns. The microscopic observation drug susceptibility (MODS) assay they are also used currently they rely on light microscopy to visualize the characteristic cording morphology of M. tuberculosis in liquid culture. MODS has shorter time to culture positivity (average 8 days) compared with LJ medium (average ~26 days), they are very expensive. The Gen-Probe assay specific for M. tuberculosis complex is a rapid detection that is also used, nucleic acid amplification (NAA) test results can be obtained as fast as in two hours (provided if a positive culture is present); it also has a high sensitivity of 99% and specificity of 99.2%. It holds the disadvantage of needing of positive culture that can take several days. Enzyme-linked immunosorbent assay (ELISA), is a test that uses antibodies and colour change to identify a substance. ELISA is an assay that uses a solid-phase enzyme immunoassay (EIA) to detect the presence of a substance, usually an antigen, in a liquid sample or wet sample. It can be used to detection of Mycobacterium antibodies in tuberculosis. The Amplified Mycobacterium Tuberculosis Direct Test (AMTDT) is used for the detection of M. tuberculosis it enables the amplification and detection of M. tuberculosis rRNA directly from respiratory specimens. The diagnostic methods employing genetechnology based on the amplification of DNA or RNA are expected to improve the speed, sensitivity, and specificity of Mycobacterium tuberculosis detection. TB rapid cultivation detection technique, such as MB/BacT system, BactecMGIT 960 system and flow cytometry. The BACTEC MGIT960 system (Becton Dickinson, Sparks, MD) performs incubation and reading of the tubes continuously inside the machine using a predefined algorithm to interpret the fluorescent signal and giving the results as positive or negative. When performing DST, the BACTEC MGIT960 interprets the results as susceptible or resistant to the antibiotic under study. Results are available within 8 days. A recent meta-analysis of the published studies found high accuracy and high predictive values associated with the use of BACTEC MGIT960. These methods are more sensitive and rapid than the traditional microbial culture-based methods. However, they cannot provide the detection results in real-time and most of these methods are centralized in large stationary laboratories because complex instrumentation and highly qualified technical staff are required. Recently, Food and Drug Administration (FDA) approved two new assays that were introduced. These two assays detect in vitro a specific immune response to M. tuberculosis. These tests are the QuantiFERON-TB Gold In-Tube (Cellestis/Qiagen, Carnegie, Australia) and the T-SPOT.TB assay (Oxford Immunotec, Abingdon, United Kingdom). Both assays use whole blood from the patient and measure the production of interferon gamma after the whole blood is exposed to specific antigens from M. tuberculosis. These tests are based on the knowledge that IFN-γ is a product of an active cell-mediated immune response induced by M. tuberculosis. However, TB detection remains a major obstacle due to several drawbacks of these methods. To date, the number of diagnosis approaches for TB has increased as the disease continues to be a major public health problem worldwide and most conventional detection technologies present difficulties in recognizing the presence of M. tuberculosis, since they are time consuming, do not provide clinically reliable results and significantly lack of sensitivity. This thesis focusedon developing two binary and one ternary-electrochemically quantum dots, all synthesised at room temperature in aqueous media for detecting (IFN-γ). Copper telluride (CuTe) and Zinc telluride (ZnTe) was prepared to check how does the two quantum dot behave individual and also to check on how they behave when they are combined and formed ternary quantum dots (CuZnTe). The electrochemical studies of the binary CuTe quantum dots, ZnTe quantum dots and the ternary CuZnTe core-shell quantum dots reveal that ternary quantum dots were stable and showed a significant enhancement in the conductivity of CuZnTe core-shell solution compared to that of CuTe and ZnTe, all studied in solution. The three different quantum dots were capped with three different capping reagents which are tetraethyl orthosilicate (TEOS), thioglycolic acid (TGA), (3-mercaptopropyl) trimethoxysilane (MPS). In the study, a label-free electrochemical immunosensor for the detection of interferon gamma (IFN-γ) was prepared for the first time using ternary quantum dots. The biosensor consists of water-soluble silica coated Copper Zinc telluride (CuZnTe core-shell) quantum dots conjugated to a gold electrode. The antibody-antigen were then conjugated on the CuZnTe core-shell QD modified gold electrode. Results from synthesis of two different binary quantum dots are also presented in the study and compared to the results of the CuZnTe core-shell QDs. The CuTe quantum dots had a small average size which was confirmed through HRTEM, SAXS and XRD analysis
5

Electrochemiluminescence of novel polyanilino-rutheniumbipyridyl-imidazo phenanthroline and carboxy-difluoroboradiazaindacene luminophores

Molapo, Kerileng Mildred January 2015 (has links)
Philosophiae Doctor - PhD / Electrochemiluminiscence, (ECL), is an electrochemically-induced process that leads to the generation of measurable luminescent signals at the electrode surface. The luminescent signals occur when electrochemically generated intermediates undergo a highly exergonic reaction to produce an electronically excited state that then emits light. Immobilization of the ECL luminophore on an electrode surface provides enhancement of ECL intensity. This work presents results of the feasibility study focused on the application of novel luminophores for electrochemiluminescence (ECL) sensors. The thesis mainly focuses on studying the ECL of polyanilinorutheniumbipyridyl- imidazo phenanthroline and carboxydifluoroboradiazaindancence luminophores. The influence of the synthetic methods on the electrochemical, structural and photophysical properties of poly(8-anilino-lnaphthalene sulphonic acid) (P ANSA) synthesized by electropolymerization (PANSA) and chemical polymerization (PANSA) were studied. Cyclic voltammetry (CV) data revealed that the electrogenerated PANSA contains species of mixed redox states; with evidence of the presence of penigraniline, emeraldine and leucoemeraldine forms of PANSA. In contrast, the CV of PANSA indicated that it is predominantly in the emeraldine form with a reduction potential at approximately + 0.2 V. The presence of emeraldine moiety in PANSA was confirmed from UV-Vis spectroscopy data. A band gap energy value of 2.5 eV was calculated for the emeraldine in PANSA from the UV data. Comparative study of the charge transfer coefficient, DCT, of the two types of PANSA indicated moderate charge propagation in PANSA (DCT = 1.68 ± 0.1 x 10-8 cm2 s-') which was order of magnitude lower than for PANSA (DCT = 1.68 ± 0.3 x 10-7 cm2 s-'). The differences in the structural properties of the two polymers were reflected in their IR spectra, with evidence of C=C and C=N stretching vibrations observed at 2030, 2158 and 2486 cm-I in PANSA, which are absent in PANSA. The mode of synthesis had a modest impact on the photophysics of the polymers, for example PANSA exhibited a luminescent lifetime of9.00 ± 0.05 ns compared with 11.5 ± 0.07 ns for PANSA. However, time resolved emission anisotropy studies gave a rotational correlation time, p, of 13.8 ± 2.47 ns for PANSA compared to 0.633 ± 0.03 ns for its chemically generated analogue. This suggests a much shorter chain length in the PANSA molecule and higher cross-linking or aggregation in PANSA that can limit incorporation of ruthenium complex on the polymer backbone. As a result, electrochemiluminescent films have been formed by electrodepositing polyaniline, PANI, films in the presence of [Ru(bpY)2PIC]2+; bpy is 2,2'-bipyridyl and PIC is (2,2'-bipyridyl)-2( 4- carboxylphenyl) imidazo [4,5 ][ 1,10] phenanthroline in this work. The homogeneous charge transport diffusion coefficient, DCT, for the Ru2+/3+couple within the PANI film is 2.6 ± 0.9 x 10-10 cm2s-l. The large DCT facilitates a fast regeneration of Ru3+and, coupled to a relatively rigid microenvironment, results in a high ECL intensity in the presence oftripropylamine as co-reactant compared to [Ru(bpY)3f+. Significantly, despite the conducting nature of the polymer backbone, the [Ru(bpy)2PICH2]2+ loaded PANI has the highest efficiency, 1.00%, yet reported for a surface confined ruthenium complex. PANI-Ru complex showed to have many properties that make it an ideal luminophore for sensitive and selective analytical methods; however, it would be useful to have other ECL labels that can span a wide range of wavelengths so that simultaneous determination of several analytes in a single sample can be investigated. In this case, the photophysics, electrochemical and electrochemiluminescent properties of a novel 1,3,5,7 -tetramethyl-8-[ (2-fluorophenyl)-6-methoxy-l ,5-naphthyridine-3-carboxy ]-4,4'difluoroboradiazaindace-ne BODIPY -COOH, dye were demonstrated in this work. The photophysics studies revealed that BODIPY -COOH is highly luminescent: exhibiting sharp absorbance bands, intense emission bands and high emission quantum yield. The quantum yield proved to be solvent dependent and was determined to be 0.88 ± 0.02 and 0.60 ± 0.04 in dimethylsulphoxide (DMSO) and acetonitrile (MeCN), respectively. Electrochemiluminescence (ECL) of BODIPYCOOH in solution was generated in the presence of either benzoyl peroxide (BPO) or hydrogen peroxide. The ECL turn-on potential in the presence of BPO was observed at potentials that are greater than - 1.5 V, and when H202 was used the ECL turn-on potential was significantly fine-tuned to less negative potential of - 0.4 V. Electrochemiluminescent thin films of BODIPY -COOH on Pt electrodes exhibited luminescence properties similar to those of the free dye in solution. However, the solution based approach ECL has its own limitations such as loss of signal due to the diffusion of the ECL reagent out of the detection zone. To overcome loss of signal effects, the introduction of cysteamine and cysteine linkers to the BODIPY dye were employed. It was seen that self-quenching was not sufficient to interfere significantly with the film ECL emission properties and thus the BODIPY thin film can be used in ECL applications. Interestingly, the BODIPY film exhibited the strongest luminescence in water and this is potentially useful in ECL application in biological media.
6

Amperometric biosensor systems prepared on poly(aniline-ferrocenium hexafluorophosphate) composites doped with poly(vinyl sulfonic acid sodium salt).

Ndangili, Peter Munyao. January 2008 (has links)
<p>The main hypothesis in this study is the development of a nanocomposite mediated amperometric biosensor for detection of hydrogen peroxide. The aim is to combine the electrochemical properties of both polyaniline and ferrocenium hexafluorophosphate into highly conductive nano composites capable of exhibiting electrochemistry in non acidic media / shuttling electrons between HRP and GCE for biosensor applications.</p>
7

Development of amperometric biosensor with cyclopentadienylruthenium (II) thiolato schiff base self-assembled monolayer (SAM) on gold

Ticha, Lawrence Awa January 2007 (has links)
A novel cyclopentadienylruthenium(II) thiolato Schiff base, [Ru(SC6H4NC(H)C6H4OCH2CH2SMe)(&eta / 5-C2H5]2 was synthesized and deposited as a selfassembled monolayer (SAM) on a gold electrode. Effective electronic communication between the Ru(II) centers and the gold electrode was established by electrostatically cycling the Shiff base-doped gold electrode in 0.1 M NaOH from -200 mV to +600 mV. The SAMmodified gold electrode (Au/SAM) exhibited quasi-reversible electrochemistry. The integrity of this electro-catalytic SAM, with respect to its ability to block and electro-catalyze certain Faradaic processes, was interrogated using Cyclic and Osteryoung Square Wave voltammetric experiments. The formal potential, E0', varied with pH to give a slope of about - 34 mV pH-1. The surface concentration, &Gamma / , of the ruthenium redox centers was found to be 1.591 x 10-11 mol cm-2. By electrostatically doping the Au/SAM/Horseradish peroxidase at an applied potential of +700 mV vs Ag/AgCl, a biosensor was produced for the amperometric analysis of hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide. The electrocatalytic-type biosensors displayed typical Michaelis-Menten kinetics with their limits of detection of 6.45 &mu / M, 6.92 &mu / M and 7.01 &mu / M for hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide respectively.
8

Amperometric biosensor systems prepared on poly(aniline-ferrocenium hexafluorophosphate) composites doped with poly(vinyl sulfonic acid sodium salt).

Ndangili, Peter Munyao. January 2008 (has links)
<p>The main hypothesis in this study is the development of a nanocomposite mediated amperometric biosensor for detection of hydrogen peroxide. The aim is to combine the electrochemical properties of both polyaniline and ferrocenium hexafluorophosphate into highly conductive nano composites capable of exhibiting electrochemistry in non acidic media / shuttling electrons between HRP and GCE for biosensor applications.</p>
9

Development of amperometric biosensor with cyclopentadienylruthenium (II) thiolato schiff base self-assembled monolayer (SAM) on gold

Ticha, Lawrence Awa January 2007 (has links)
A novel cyclopentadienylruthenium(II) thiolato Schiff base, [Ru(SC6H4NC(H)C6H4OCH2CH2SMe)(&eta / 5-C2H5]2 was synthesized and deposited as a selfassembled monolayer (SAM) on a gold electrode. Effective electronic communication between the Ru(II) centers and the gold electrode was established by electrostatically cycling the Shiff base-doped gold electrode in 0.1 M NaOH from -200 mV to +600 mV. The SAMmodified gold electrode (Au/SAM) exhibited quasi-reversible electrochemistry. The integrity of this electro-catalytic SAM, with respect to its ability to block and electro-catalyze certain Faradaic processes, was interrogated using Cyclic and Osteryoung Square Wave voltammetric experiments. The formal potential, E0', varied with pH to give a slope of about - 34 mV pH-1. The surface concentration, &Gamma / , of the ruthenium redox centers was found to be 1.591 x 10-11 mol cm-2. By electrostatically doping the Au/SAM/Horseradish peroxidase at an applied potential of +700 mV vs Ag/AgCl, a biosensor was produced for the amperometric analysis of hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide. The electrocatalytic-type biosensors displayed typical Michaelis-Menten kinetics with their limits of detection of 6.45 &mu / M, 6.92 &mu / M and 7.01 &mu / M for hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide respectively.
10

Development of amperometric biosensor with Cyclopentadienylruthenium(ii) thiolato schiff base selfassembled Monolayer (sam) on gold

Ticha, Lawrence Awa 11 1900 (has links)
A novel cyclopentadienylruthenium(II) thiolato Schiff base,[Ru(SC6H4NC(H)C6H4OCH2CH2SMe)(η5-C2H5]2 was synthesized and deposited as a selfassembled monolayer (SAM) on a gold electrode. Effective electronic communication between the Ru(II) centers and the gold electrode was established by electrostatically cycling the Shiff base-doped gold electrode in 0.1 M NaOH from -200 mV to +600 mV. The SAMmodified gold electrode (Au/SAM) exhibited quasi-reversible electrochemistry. The integrity of this electro-catalytic SAM, with respect to its ability to block and electro-catalyze certain Faradaic processes, was interrogated using Cyclic and Osteryoung Square Wave voltammetric experiments. The formal potential, E0', varied with pH to give a slope of about - 34 mV pH-1. The surface concentration, Γ, of the ruthenium redox centers was found to be 1.591 x 10-11 mol cm-2. By electrostatically doping the Au/SAM/Horseradish peroxidase at an applied potential of +700 mV vs Ag/AgCl, a biosensor was produced for the amperometric analysis of hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide. The electrocatalytic-type biosensors displayed typical Michaelis-Menten kinetics with their limits of detection of 6.45 μM, 6.92 μM and 7.01 μM for hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide respectively / Magister Scientiae - MSc

Page generated in 0.4056 seconds