Spelling suggestions: "subject:"cycloidea"" "subject:"cycloidal""
1 |
Floral symmetry genes elucidate the development and evolution of oil-bee pollinated flowers of Malpighiaceae and KrameriaceaeKhojayori, Farahnoz N 01 January 2018 (has links)
Specialization on insect and animal pollinators is thought to be the driving force for the evolution of floral traits. Specifically in the New World (NW), the oil-bee pollination syndrome has led to the convergence of floral characters in two distantly related families of core eudicots, Malpighiaceae and Krameriaceae. Both families display a flag-like structure that establishes a zygomorphic flower and floral oil rewards in epithelial elaiophores. These traits work concomitantly to attract and reward female oil-bees that help fertilize these flowers and in return receive oils. The underlying genetics of floral zygomorphy were studied in several clades of core eudicots, which implicated CYCLOIDEA2-(CYC2-)like genes of the TCP gene family to play a role in the establishment and maintenance of this trait. In Malpighiaceae, previous work demonstrated that two CYC2-like genes, CYC2A and CYC2B, are expressed during development correlated with establishing zygomorphy in flowers of NW Malpighiaceae. In this thesis work, I investigated the underlying developmental and genetic basis for the establishment of non-homologous and yet functionally similar traits in the oil-bee pollinated flowers of Malpighiaceae and Krameriaceae. In Chapter 1, I investigated the modification of a conserved CYC2 genetic program in the Old World (OW) acridocarpoids of Malpighiaceae following a major biogeographic disjunction. And in Chapter 2, I studied the floral ontogeny and genetic basis of floral zygomorphy development in Krameria lanceolata Torrey of Krameriaceae. This thesis work sheds light on the significance of the interdisciplinary study of floral symmetry evolution through comparative pollination ecology, development, and genetics.
|
Page generated in 0.0235 seconds