• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cyclotides : Tuning Parameters Toward Their Use in Drug Design

Yeshak, Mariamawit Yonathan January 2012 (has links)
Cyclotides are plant proteins with a unique topology, defined as the cyclic cystine knot motif. The motif endows cyclotides with exceptional chemical and biological stability. They also exhibit a wide range of biological activities including insecticidal, cytotoxic, anti-HIV and antimicrobial effects. Hence, cyclotides have become potential candidates in the development of peptide-based drugs; either as scaffolds to stabilize susceptible peptide sequences or as drugs by their own right. In this thesis, important parameters that could be inputs toward this development have been tuned. An extraction protocol that can be extended to industrial scale production of the cyclotides from natural sources was developed; accordingly, a single maceration with hydroalcoholic solutions of medium polarity represented an optimum extraction method. Moreover, it was shown that investigating the cyclotide content of cyclotide-bearing plants from diverse environments is a promising approach for extending the knowledge of both structural and biological diversity of these proteins. Five novel cyclotides with new sequence diversity were isolated and characterized from a violet that grows on Ethiopian highlands at an altitude of 3400 m. One of the areas where the cyclotide framework has attracted interest is the development of stable antimicrobial peptides. A stability study was carried out to determine the stability of the cyclotide framework in a cocktail of bacterial proteases and serum where the native forms of tested cyclotides exhibited high stability profile. Understanding the modes of cyclotide-cell interaction is certainly an important factor for the potential development of cyclotide-based drugs. Cellular studies were carried out using the comet assay and microautoradiography. A bell-shaped dose response curve was obtained for the DNA damaging effect of the cyclotides in the comet assay, which was the first toxicological assay of its kind on this class of proteins. The microautoradiography study revealed that the cyclotides penetrate into the cells even at cytotoxic concentrations. From previous reports, it was known that the cyclotides interact with membranes; the cellular studies in this thesis added to this knowledge by clearly demonstrating that these proteins have multiple modes of action.
2

Interaction of cyclotides and bacteria : A study of the cyclotide action and the bacterial reaction

Malik, Sohaib Zafar January 2017 (has links)
The growing problem of antibiotic resistance and the lack of promising prospective antibiotics have forced us to search for new classes of antibiotics. Among the candidates to develop into future antibacterials are antimicrobial peptides (AMPs). These potent, broad spectrum compounds are important components of innate immunity of organism from all kingdoms of life. One such family of mini-proteins from plants is called cyclotides, whose members are defines by cyclic backbone and a cystine knot (CCK), which confers to them extreme stability in the face of biological, chemical and physical insults.     Some cyclotides possess Gram-negative specific antibacterial activity; the purpose of this thesis was to characterize how these molecules kill bacteria, and how bacteria would respond to treatment with cyclotides. For this purpose, Salmonella enterica and Escherichia coli mutants resistant to the cyclotides cycloviolacin O2 and cycloviolacin O19, respectively, were selected. These mutants were characterized by whole genome sequencing, genetic reconstitution, fitness measurements, and cross-resistance studies. These studies identified a number of genetic pathways for resistance development to cyclotides. These mutants displayed variable fitness profiles in laboratory growth media and in mice competition experiments, with some mutants possessing a fitness advantage in mice. Cross-resistance studies resulted in the identification of several cases of cross-resistance and collateral sensitivity between cyclotides and other AMPs/antibiotics.      Antimicrobial effects of cyclotides were assayed in different conditions and in bacterial organisms with different surface characteristics. In addition, immunolocalization experiments were performed to explore the biological distribution of cyclotides in plants and to determine the mechanism of action of cyclotides in bacteria, respectively. Antibodies raised against cyO2 were used for this purpose. Immunohistochemical techniques applied to plant cells, tissues and organs provided the information that cyclotides were distributed in all plant organs, and were found in tissues vulnerable to pathogen attack, and that cyclotides were stored in the vacuoles of plant cells. Immunogold staining of cyclotide treated cells of S. typhimurium, showed effects of cyclotide treatment on the cell envelope components as well as cytoplasm. A higher number of cyclotide molecules was associated with the cell envelope, but a considerable fraction of them penetrated into the cytoplasm.

Page generated in 0.0328 seconds