• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel mechanisms for enzymatic regulation of phosphatidylcholine synthesis by proteolysis

Chen, Beibei 01 January 2008 (has links)
Pulmonary surfactant is a critical surface-active substance consisting of dipalmitoylphosphatidylcholine (DPPtdCho) and key apoproteins that are produced and secreted into the airspace from alveolar type II epithelial cells. Surfactant deficiency leads to severe lung atelectasis, ventilatory impairment, and gas-exchange abnormalities. These are features of the acute lung injury syndrome, characterized by a strong pro-inflammatory component where cytokines or bacteria infections greatly impair surfactant DPPtdCho biosynthesis. The key enzyme needed to produce surfactant DPPtdCho is a rate-limiting enzyme CTP: phosphocholine cytidylyltransferase (CCTalpha). Calmodulin (CaM), rather than disruption of an NH2-terminal PEST sequence, stabilizes CCTalpha from actions of the proteinase, calpain. Mapping and site-directed mutagenesis of CCTalpha uncovered a motif (LQERVDKVK) harboring a vital recognition site, Q243, whereby CaM directly binds to the enzyme. Mutagenesis of CCTalpha Q243 not only resulted in loss of CaM binding, but also led to complete calpain resistance in vitro and in vivo. These data suggest that CaM, by antagonizing calpain, serves as a novel binding partner for CCTalpha that stabilizes the enzyme under pro-inflammatory stress. We further show that CCTalpha does not undergo polyubiquitination and proteasomal degradation. Rather, the enzyme is monoubiquitinated at a molecular site (K57) juxtaposed near its NLS resulting in disruption of its interaction with importin, nuclear exclusion, and subsequent degradation within the lysosome. Importantly, by using CCTalpha-ubiquitin hybrid constructs that vary in the intermolecular distance between ubiquitin and the NLS, we show that CCTalpha monoubiquitination masks its NLS resulting in cytoplasmic retention. These results unravel a unique molecular mechanism whereby monoubiquitination governs the trafficking of a critical regulatory enzyme in vivo. Last, we identify FBXL2 as a novel F-box E3 ubiquitin ligase that targets CCTalpha for degradation. Interestingly, FBXL2 also interacts with CaM, and CaM directly disrupts CCTalpha and FBXL2 interaction. This study demonstrates in the first time that adenoviral gene transfer of CaM attenuates the deleterious effects of P. aeruginosa infection by improving several parameters of pulmonary mechanics in animal models of sepsis-induced acute pulmonary injury. Collectively, these studies reveal a novel regulatory mechanism for phosphatidylcholine synthesis that may provide important clues to understanding the pathobiology of acute lung injury.
2

X-Ray Crystallographic Studies of Glycerol-3-Phosphate Cytidylyltransferase from Staphylococcus Aureus / The Structure of Glycerol-3-Phosphate Cytidylyltransferase from Staphylococcus Aureus

Yim, Veronica January 2002 (has links)
Glycerol-3-phosphate cytidylyltransferase from 𝘚𝘵𝘢𝘱𝘩𝘺𝘭𝘰𝘤𝘰𝘤𝘤𝘶𝘴 𝘢𝘶𝘳𝘦𝘶𝘴 complexed with CTP (TarDₛₐ-CTP) was crystallized by the hanging drop-vapor diffusion method at 22°C. Determination of crystallization condition included examination of the amount of precipitant, investigation of the effects of small molecules, and alteration of the rate of diffusion. With these three optimization steps, crystals suitable for x-ray diffraction study were produced. During data processing, TarDₛₐ-CTP was determined to belong to the space group P3₁21, with unit-cell dimensions a=b=92.2 and c=156.1Å. The crystal structure of TarDₛₐ-CTP was solved to 3.0Å by molecular replacement, using TagD from 𝘉𝘢𝘤𝘪𝘭𝘭𝘶𝘴 𝘴𝘶𝘣𝘵𝘪𝘭𝘪𝘴 as a search model. Unlike the search model, TarDₛₐ appears as a tetramer in the asymmetric unit. This result also confirms the gel-filtration and ultracentrifugation studies that were done previously. Although TarDₛₐ crystals were grown in the presence of CTP, the crystal structure does not reveal convincing data for the location and position of this co-factor. However, the data suggests a possible location for CTP in one of the four subunits in an orientation that differs from that of TagD_Bₛ. Unfortunately, the resolution of this data set at 3.0Å is not high enough to corroborate this finding. / Thesis / Master of Science (MS)
3

Insights into the role of CTP:phosphocholine cytidylyltransferase-alpha in hepatic lipid metabolism and cellular integrity

Niebergall, Lorissa J Unknown Date
No description available.
4

Avaliação da atividade do CHY-1, um novo análogo da miltefosina, como potencial inibidor da enzima CTP: fosfoetanolamina-citidilil-transferase, sobre o carcinoma de pulmão de não-pequenas células. / Evaluation of the activity of CHY-1, a novel miltefosine analogue, as a potential CTP: phosphoethanolamine cytidylyltransferase enzyme inhibitor against non-small cell lung cancer.

Teixeira, Sarah Fernandes 18 August 2016 (has links)
O câncer de pulmão é um dos mais incidentes e letais, e, assim, a busca de novos fármacos é necessária. Atualmente o desenvolvimento de fármacos conta com abordagens computacionais que otimizam este processo. Dado que a fosfatidiletanolamina desempenha importantes papeis fisiológicos e uma das enzimas envolvidas na sua síntese, a CTP:fosfoetanolamina-citidilil-transferase (Pcyt2) é frequentemente superexpressa em células de câncer de pulmão, no presente trabalho, foram avaliados o potencial terapêutico de CHY-1, um análogo da miltefosina desenvolvido como inibidor da enzima Pcyt2, e os mecanismos inerentes à sua atividade antitumoral. O CHY-1 apresentou citotoxicidade superior ao seu protótipo e a outro inibidor da enzima Pcyt2, a meclizina. Além disso, as células malignas foram mais sensíveis ao CHY-1 do que as células não-tumorigênicas. Em conclusão, o presente trabalho evidencia o potencial do CHY-1 como um inibidor da enzima Pcyt2 e candidato a fármaco com atividade preferencial para câncer de pulmão. / Lung cancer is one of the most incident and lethal cancers, thus, the pursuit for new drugs is necessary. Nowadays, new drugs development has computational tools that improves this process. Once that phosphatidylethanolamine plays several important physiological roles and one of the enzymes of its production pathway, CTP:phosphoethanolamine cytidylyltransferase (Pcyt2), is usually overexpressed in lung cancer cells, therefore, this study aimed was to evaluate the antitumor effects of CHY-1, a miltefosine analogue developed as an inhibitor of Pcyt2 enzyme, and to investigate the mechanisms related to its antitumor action. CHY-1 was more cytotoxicity than its prototype, miltefosine, and was more cytotoxic than another inhibitor Pcyt2 enzyme, meclizine. Morevover, malignant cells were more sensitive to CHY-1 effects than non-tumorigenic cells. In conclusion, this work presents CHY-1 as an inhibitor of Pcyt2 enzyme and new candidate a drug with preferential activity on NSCLC cells.
5

Avaliação da atividade do CHY-1, um novo análogo da miltefosina, como potencial inibidor da enzima CTP: fosfoetanolamina-citidilil-transferase, sobre o carcinoma de pulmão de não-pequenas células. / Evaluation of the activity of CHY-1, a novel miltefosine analogue, as a potential CTP: phosphoethanolamine cytidylyltransferase enzyme inhibitor against non-small cell lung cancer.

Sarah Fernandes Teixeira 18 August 2016 (has links)
O câncer de pulmão é um dos mais incidentes e letais, e, assim, a busca de novos fármacos é necessária. Atualmente o desenvolvimento de fármacos conta com abordagens computacionais que otimizam este processo. Dado que a fosfatidiletanolamina desempenha importantes papeis fisiológicos e uma das enzimas envolvidas na sua síntese, a CTP:fosfoetanolamina-citidilil-transferase (Pcyt2) é frequentemente superexpressa em células de câncer de pulmão, no presente trabalho, foram avaliados o potencial terapêutico de CHY-1, um análogo da miltefosina desenvolvido como inibidor da enzima Pcyt2, e os mecanismos inerentes à sua atividade antitumoral. O CHY-1 apresentou citotoxicidade superior ao seu protótipo e a outro inibidor da enzima Pcyt2, a meclizina. Além disso, as células malignas foram mais sensíveis ao CHY-1 do que as células não-tumorigênicas. Em conclusão, o presente trabalho evidencia o potencial do CHY-1 como um inibidor da enzima Pcyt2 e candidato a fármaco com atividade preferencial para câncer de pulmão. / Lung cancer is one of the most incident and lethal cancers, thus, the pursuit for new drugs is necessary. Nowadays, new drugs development has computational tools that improves this process. Once that phosphatidylethanolamine plays several important physiological roles and one of the enzymes of its production pathway, CTP:phosphoethanolamine cytidylyltransferase (Pcyt2), is usually overexpressed in lung cancer cells, therefore, this study aimed was to evaluate the antitumor effects of CHY-1, a miltefosine analogue developed as an inhibitor of Pcyt2 enzyme, and to investigate the mechanisms related to its antitumor action. CHY-1 was more cytotoxicity than its prototype, miltefosine, and was more cytotoxic than another inhibitor Pcyt2 enzyme, meclizine. Morevover, malignant cells were more sensitive to CHY-1 effects than non-tumorigenic cells. In conclusion, this work presents CHY-1 as an inhibitor of Pcyt2 enzyme and new candidate a drug with preferential activity on NSCLC cells.

Page generated in 0.055 seconds