• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 52
  • 38
  • 30
  • 9
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 346
  • 346
  • 71
  • 49
  • 43
  • 36
  • 33
  • 29
  • 28
  • 26
  • 26
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Metabolic Studies on 1-Cyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridinyl Derivatives by HPLC and LC-ESI/MS

Shang, Xueqin 11 August 1999 (has links)
The MAO-B catalyzed metabolic bioactivation of the parkinsonian inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to generate the neurotoxic 1-methyl-4-phenylpyridinium species (MPP+) is well documented. The N-cyclopropyl analog (CPTP) of MPTP is a mechanism based inactivator of MAO-B which presumably is processed by a single electron transfer (SET) pathway to generate a bioalkylating species. These results have prompted us to study how the cytochromes P450, the major liver drug metabolizing oxidases, interact with N-cyclopropyl analogs of MPTP. HPLC with diode array detection and LC-electrosprary ionization mass spectrometry (LC-ESI/MS) based methods have been developed for metabolite detection and characterization. From the UV spectral data and pseudomolecular ion species observed by LC-ESI/MS, we have identified N-oxide, C-hydroxylated, and pyridinium metabolites. For the trans-1-(2-phenylcyclopropyl) analog, cinnamaldehyde and p-hydroxycinnamaldehyde also were characterized. Incubation of CPTP and its derivatives with cDNA expressed human hepatic cytochrome P450 has shown that CYP2D6 catalyzes the formation of cinnamaldehyde, the N-descyclopropyl, pyridinium and hydroxylated products. CYP3A4 is responsible for the formation of the N-descyclopropyl and pyridinium species and cinnamaldehyde but it does not mediate any hydroxylation reactions. Since both the a-carbon oxidation and N-descyclopropylation transformations are mediated by a single enzyme (either CYP2D6 or CYP3A4), we propose a common intermediate for both pathways, namely the cyclopropylaminyl radical cation generated by the SET pathway. This intermediate partitions between the a-carbon oxidation pathway leading to the dihydropyridinium and pyridinium species and the ring opening pathway leading to the N-descyclopropyl metabolite and aldehyde species. The phenyl substituent on the cyclopropyl ring stabilizes the ring opened distonic radical cation and favors the ring opening pathway and results in the formation of less of the pyridinium species. The proton and methyl substituents on the cyclopropyl ring favor the a-carbon oxidation pathway and increased amounts of the pyridinium species are formed. / Master of Science
152

Přeměna cabozantinibu enzymy první fáze biotransformace / Metabolism of cabozantinib by enzymes of first phase of biotransformation

Jurečka, Tomáš January 2021 (has links)
Cabozantinib is an anticancer drug that inhibit tyrosine kinases which allow signal pathways important for growth and development of tumors. It is used for treatment of medullary thyroid cancer, hepatocellular carcinoma and kidney cancer. The major enzymes of the first phase of biotransformation that metabolize cabozantinib are cytochromes P450. In this thesis it was studied metabolism of cabozantinib and cytochromes P450 that participated on this metabolism. Hepatic microsomes of rat, mouse and rabbit were used for studying metabolism of cabozantinib in this thesis. It was also focused on the impact of particular isoforms of cytochromes P450 on metabolism of cabozantinib in rat microsomes. Time dependence of cabozantinib conversion in hepatic rat microsomes was also studied. Enzyme kinetics of metabolism of cabozantinib in hepatic rat microsomes, as well as impact of cytochromes P450 inhibitors on the metabolism were included. Metabolites were analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. Formation of metabolites of cabozantinib increased over time to 30 minutes of incubation and with some others to 40 minutes of incubation. Up to five different metabolites were detected in experiments (M1, desmethyl cabozantinib, M3, monohydroxy cabozantinib and cabozantinib...
153

Molecular mechanism of resistance in a multiple-herbicide resistant Echinochloa phyllopogon / 多除草剤抵抗性タイヌビエにおける抵抗性の分子機構

Iwakami, Satoshi 23 July 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第17830号 / 農博第2015号 / 新制||農||1016(附属図書館) / 学位論文||H25||N4787(農学部図書室) / 30645 / 京都大学大学院農学研究科農学専攻 / (主査)教授 稲村 達也, 教授 冨永 達, 教授 奥本 裕 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
154

Detection and enrichment of cytochrome P450s using bespoke affinity chromatography and proteomic techniques. Development of chemical immobilisation and novel affinity chromatography methods, with subsequent proteomic analysis, for the characterisation of cytochrome P450s important in cancer research.

Bateson, Hannah January 2012 (has links)
Introduction: Cellular membrane proteins, such as the cytochrome P450 enzyme superfamily (P450), have important roles in the physiology of the cell. P450s are important in metabolising endogenous molecules, as well as metabolising xenobiotic substances for detoxification and excretion. P450s are also implicated in cancer as they can act to ¿negatively¿ de-activate or ¿positively¿ activate cancer therapeutics. Identifying specific P450s that are highly up-regulated at the tumour site could be used to predict drug response and formulate targeted cancer therapy to help diminish systemic side-effects. Methods: Previous enrichment strategies have been unable to isolate the full complement of the P450 superfamily. To develop enrichment procedures for the P450s, a proteomic strategy was developed so that compounds could be screened for their effectiveness as general P450 probes. A standardised work-flow was created, encompassing affinity chromatography, protein concentration/desalting, followed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and high performance liquid chromatography-mass spectrometry (HPLC-MS). A ketoconazole analogue and a 2-EN analogue, with known P450 inhibition, were immobilised on a solid support for comparison to immobilised histamine. Co-factor removal, competitive elution and DTT cleavage of disulfide bonds of probes were utilised to elute bound proteins. Results/Discussion: Inhibitor-beads bound a large range of proteins, including P450¿s, of which some were eluted by co-factor removal, some by competitive elution. Specificity of binding was improved by optimising buffer conditions and solid supports, however non-specific binding was not totally eradicated. All human P450s from spiked samples and 18 P450s from more complex mouse liver samples were recovered using one or more ligands. / Bruker Daltonics
155

ORGANIZATION AND EVOLUTION OF THE CYP2A-T GENE SUBFAMILY CLUSTER IN RODENTS, AND A COMPARISON TO THE SYNTENIC HUMAN CLUSTER

Wang, Haoyi 18 April 2003 (has links)
No description available.
156

CLONING OF KNOWN AND NOVEL CYTOCHROME P450S IN SCUTELLARIA BAICALENIS

Brundage, Meghan Elizabeth 11 October 2001 (has links)
No description available.
157

APPLICATION OF COMPUTATIONAL METHODS TO THE STUDY OF ORGANIC MACROMOLECULES AND BIOMOLECULES: STRUCTURE AND MECHANISTIC INSIGHTS IN LARGER CHEMICAL SYSTEMS

Sanan, Toby T. 03 September 2010 (has links)
No description available.
158

FUNCTIONAL SCREENING OF CYTOCHROME P450 ACTIVITY AND UNCOUPLING BY CAPILLARY ELECTROPHORESIS

Harskamp, James G. 10 1900 (has links)
<p>Cytochrome P450s are a super-family of heme containing proteins that are found in all domains of life and are involved in the synthesis and breakdown of steroids, xenobiotics, and pharmaceuticals. Using five heterologously expressed zebrafish (Danio rerio) CYP1s, an assay was developed for CYP activity in order to monitor the consumption of the cofactor NADPH, providing a label-free screening tool to determine function of novel CYP genes. Using well-established fluorogenic substrates, NADPH and NADP+ were separated by capillary electrophoresis (CE) from stopped CYP1 reactions and measured with UV absorbance detection as a surrogate to assess the rate of substrate metabolism. Product formation was confirmed by fluorometric detection of metabolites, giving rates of enzyme activity which could be compared to the rates of cofactor turn-over measured by CE. 17β-estradiol, four alkoxyresorufin and two coumarin based synthetic fluorogenic CYP substrates were screened for activity with recombinant zebrafish CYP1A, 1B1, 1C2, 1C2 and 1D1. Cofactor consumption was generally much larger than product formation for the majority of substrates and CYP1 isoforms, suggesting that the majority of metabolic events were uncoupled. Large uncoupling was seen in CYP1 when metabolizing estradiol, showing that endogenous compounds can also show severe uncoupling. Reactive oxygen species (ROS), a product of uncoupled events, were detected with 2,7- dichorofluorescein. Attempts for concomitant detection of ROS production and cofactor consumption with CE-UV detection were investigated, however, detection limits for 2,7-dichlorofluorescein were not adequate for detection of hydrogen peroxide production from CYP1 mediated reactions. Future work will be required to develop a single assay to quantitatively measure CYP activity by CE for functional determination of CYPs with unknown function.</p> / Master of Science (MSc)
159

THE CYTOCHROME P450 SUPERFAMILY COMPLEMENT (CYPome) IN THE ANNELID CAPITELLA TELETA

Dejong, Christopher A. January 2013 (has links)
<p>CYPs are a large and diverse protein superfamily found in all domains of life and are able to metabolize a wide array of both exogenous and endogenous molecules. The CYPome of the polychaete annelid Capitella teleta has been robustly identified and annotated with the genome assembly available (version 1). Annotation of 84 full length and 12 partial CYP sequences predicted a total of 96 functional CYPs in C. teleta. A further 13 CYP fragments were found but these may be pseudogenes. The C. teleta CYPome contained 24 novel CYP families and seven novel CYP subfamilies within existing families. A phylogenetic analysis was completed, primarily with vertebrate sequences, and identified that the C teleta sequences were found in 9 of the 11 metazoan CYP clans. Clan 2 was expanded in this species with 51 CYPs in 14 novel CYP families containing 20 subfamilies. There were five clan 3, four clan 4, and six mitochondrial clan full length CYPs. Two CYPs, CYP3071A1 and CYP3072A1, did not cluster with any metazoan CYP clan. C. teleta had a CYP51A1 gene with ~65% identity to vertebrate CYP51A1 sequences and was predicted to have lanosterol 14 α-demethylase activity. Several CYPs (CYP376A1, CYP3068A1, CYP3069A1, and CYP3070A1) are discussed as candidate genes for steroidogenesis. There are two CYP1-like CYPs and a total of four CYP331s found in C. teleta, which may play a role in PAH metabolism and warrant further analysis.</p> / Master of Science (MSc)
160

CHARACTERIZATION OF CYB5D2 AND ITS HEME BINDING ASSOCIATED FUNCTIONS

Bruce, Anthony 24 September 2014 (has links)
<p>Cytochrome b5 heme binding domain 2 (CYB5D2) is a heme binding protein that was initially identified for its ability to attenuate the function of the PTEN tumor suppressor gene. CYB5D2 sustains ectopic PTEN expression in U87 cells, and can also confer survival from serum starvation in NIH3T3 cells. An antibody was generated to the carboxyl terminus of CYB5D2 to detect endogenous protein expression. The highest expression of CYB5D2 protein is in neural cancer cell lines. CYB5D2 is weakly expressed in breast and kidney cancer cell lines, and moderately expressed in prostate cancer cell lines. To investigate the role of the heme binding domain in CYB5D2, a conserved aspartic acid (D86) within this domain was mutated to glycine, and this was characterized as being unable to bind heme. CYB5D2(D86G) displayed a loss of function compared to wild-type CYB5D2. To study the loss of expression of CYB5D2, stable CYB5D2 shRNA was achieved in HeLa and Huh7 cells. While ectopic CYB5D2 inhibited HeLa cell proliferation and growth in soft agar, CYB5D2(D86G) expression and CYB5D2 shRNA increased cell proliferation and soft agar growth. While ectopic CYB5D2 conferred survival from chemotherapeutic drugs in HeLa cells, CYB5D2(D86G) and CYB5D2 shRNA cells were susceptible to drug treatments. CYB5D2 inhibits SREBP signalling, which requires its heme binding ability. Using cyclohexamide treatments, CYB5D2 stabilized ectopic Insig1, while CYB5D2(D86G) destabilized ectopic Insig1. CYB5D2 shRNA reduced endogeneous CYP51A1 (lanosterol demethylase) and Insig1 protein levels, and increased the susceptibility of HeLa cells to mevalonate treatments. Furthermore, CYB5D2 shRNA HeLa cells displayed reduced CYP3A4 activity, a cytochrome P450 enzyme involved in drug metabolism. CYB5D2 binds to cytochrome P450 reductase (POR), while CYB5D2(D86G) cannot. CYB5D2 co-immunoprecipitates with endogenous POR under serum-free conditions in HeLa and Huh7 cells, while CYB5D2(D86G) cannot. Collectively, CYB5D2 is a POR interacting protein, which regulates CYP51A1 and CYP3A4 activity.</p> / Doctor of Philosophy (Medical Science)

Page generated in 0.0645 seconds