• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude expérimentale et numérique de la décomposition thermique du bois résineux / Kinetic study and modeling of the thermal decomposition of solid materials. Application to the wood degradation in case of fire

Batiot, Benjamin 19 September 2014 (has links)
Les incendies sont complexes et mettent en jeu une multitude de phénomènes. Afin de les étudier, l’approche multiéchelle permet de séparer les processus.Parmi ceux-ci, la décomposition thermique des solides joue un rôle très important. Terme source, elle traduit la quantité, le débit et la nature des composés volatils émis. Sa description numérique est donc capitale. Les modèles utilisés aujourd’hui sont formés d’une loi de variation de la vitesse de forme « Arrhenius », couplée à une fonction de conversion de la masse pour chaque espèce étudiée et d’un mécanisme réactionnel organisant les réactions entre elles. Toutefois, ce modèle s’appuie sur les théories utilisées dans la phase gazeuse et de sérieux doutes peuvent être émis sur sa représentativité pour une application dans la phase condensée.Les travaux de thèse exposés dans ce rapport se focalisent sur le développement d’un modèle en partant des réactions et des processus les plus fondamentaux dans la phase condensée afin de permettre la simulation de la cinétique de décomposition des matériaux solides. Le second aspect concerne l’étude de ce modèle pour déterminer la méthode de résolution et d’optimisation la plus adéquate, le rôle de chacun des paramètres, les éventuels mécanismes de compensation et l’unicité de la solution.Finalement, l’ensemble de la démarche est appliquée à un matériau complexe, le bois. Les résultats obtenus, à partir d’une nouvelle démarche développée lors de ces travaux de thèse, montrent une amélioration significative du modèle aux aspects physiques et chimiques de la dégradation thermique des matériaux solides. / Fires are complex and a variety of phenomena are involved. In order to study them, the up-scaling approach separates all the processes.Among them, the solid thermal decomposition has an important role to play. Source term, it reflects the amount, rate and nature of volatile compounds emitted and its numerical description is essential. The models used currently are formed by a law of variable speed (the Arrhenius law) coupled with a conversion function of mass for each species and a kinetic mechanism organizing all reactions between them. However, this model is based on the theories used in the gas phase and serious doubts might be raised with regard to the representativeness for application in the condensed phase.The thesis works exposed in this report are focused on the model development departing from the reactions and the processes the more fundamental in the condensed phase in order to permit the simulation of the solid kinetic decomposition. The second aspect concerns the study of this model to determine the resolution and the optimization method the most appropriate, the role of each parameter, the possible compensation mechanisms and the uniqueness of the solution.Finally, the entire process is applied to a complex material, the wood. The results obtained from a new approach developed in this work, show a significant improvement of the model to the physical and chemical aspects of the thermal degradation of solid materials.
2

Mesure expérimentale de l'énergie d'activation de la fusion de membranes lipidiques / Experimental measurement of the activation energy of lipid membrane fusion

François-Martin, Claire 08 April 2016 (has links)
In vivo, la fusion membranaire ne doit pas avoir lieu spontanément. C’est pourquoi ce processus présente une barrière énergétique conséquente qui est surmontée grâce à l'action de multiples protéines. Même si la fusion biologique est très complexe, son résultat est la coalescence des deux bicouches lipidiques qui forment la matrice des membranes impliquées. L'énergie nécessaire à la perturbation de l'arrangement en bicouche lors de leur fusion doit donc être semblable à celle intervenant dans la fusion biologique. Dans le but d'estimer l’énergie d’activation de la fusion biologique, nous avons établi un protocole expérimental permettant de déterminer l’énergie d’activation et le facteur d’Arrhenius de la réaction, grâce à la loi d’Arrhenius. Les surfaces relatives occupées par la tête polaire et les queues hydrophobes d’un lipide lui confèrent une courbure préférentielle, dite courbure spontanée. En étudiant des membranes présentant des compositions lipidiques diverses, j’ai montré qu’une inadéquation entre la courbure de la membrane et la courbure spontanée du lipide affectait à la fois le facteur d’Arrhenius et l’énergie d’activation. Une courbure plus négative génère plus de défauts à la surface de la membrane « plate », ce qui augmente la fréquence de la nucléation de la fusion et accroît le facteur d’Arrhenius. Au cours du processus de fusion, la géométrie des membranes est modifiée et celle-ci présente de régions de fortes courbures. Une inadéquation entre la courbure spontanée du lipide et celle qu’il devrait adopter pour que la fusion soit accomplie peut inhiber la fusion et donc faire augmenter l’énergie d’activation. / In vivo, membrane fusion must not occur spontaneously. Thus, membrane fusion requires a large activation energy that is overcome through the action of multiple proteins. Even though biological fusion is very complex, it results in the coalescence of both lipid bilayers that constitute the cores of the involved membranes. Therefore, the activation energy that is necessary to disrupt the leaflet arrangement during lipid bilayer fusion should be similar to that of in vivo membrane fusion. In order to approach biological membrane fusion’s activation energy, we developed an experimental protocol which allows determining the activation energy and the Arrhenius factor of the reaction, thanks to Arrhenius’ law. The relative areas occupied by the polar head and hydrophobic tails of a lipid confers to it a preferential curvature, called spontaneous curvature. Investigating membranes with several lipid compositions, I found that a mismatch between the membrane curvature and the spontaneous curvature of the lipid affects both the Arrhenius factor and the activation energy. A more negative curvature generates more hydrophobic defects in the “flat” membrane which leads to an increase in the frequency of fusion nucleation, i.e. a larger Arrhenius factor. During the fusion process, membrane shapes are modified and adopt large positive and negative curvatures, each leaflet having opposite curvatures. A mismatch between the spontaneous curvature of the lipid and the one it should adopt in order for fusion to proceed can inhibit the process of fusion, i.e increase its activation energy.

Page generated in 0.0321 seconds