1 |
Event-Based Recognition Of Lived : Experiences In User Reviews / Reconnaissance d'expériences vécues dans les avis d'utilisateurs : une méthode basée sur les événementsHassan, Ehab 03 May 2017 (has links)
La quantité de contenu généré par l'utilisateur sur le Web croît à un rythme rapide.Une grande partie de ce contenu est constituée des opinions et avis sur des produits et services. Vu leur impact, ces avis sont un facteur important dans les décisions concernant l'achat de ces produits ou services. Les utilisateurs ont tendance à faire confiance aux autres utilisateurs, surtout s'ils peuvent se comparer à ceux qui ont écrit les avis, ou, en d'autres termes, ils sont confiants de partager certaines caractéristiques. Par exemple, les familles préféreront voyager dans les endroits qui ont été recommandés par d'autres familles. Nous supposons que les avis qui contiennent des expériences vécues sont plus précieuses, puisque les expériences donnent aux avis un aspect plus subjective, permettant aux lecteurs de se projeter dans le contexte de l'écrivain.En prenant en compte cette hypothèse, dans cette thèse, nous visons à identifier, extraire et représenter les expériences vécues rapportées dans les avis des utilisateurs en hybridant les techniques d'extraction des connaissances et de traitement du langage naturel,afin d'accélérer le processus décisionnel. Pour cela, nous avons défini opérationnellement une expérience vécue d'un utilisateur comme un événement mentionné dans un avis, où l'auteur est présent parmi les participants. Cette définition considère que les événements mentionnés dans le texte sont les éléments les plus importants dans les expériences vécues: toutes les expériences vécues sont basées sur des événements, qui sont clairement définis dans le temps et l'espace. Par conséquent, nous proposons une approche permettant d'extraire les événements à partir des avis des utilisateurs, qui constituent la base d'un système permettant d'identifier et extraire les expériences vécues.Pour l'approche d'extraction d'événements, nous avons transformé les avis des utilisateur sen leurs représentations sémantiques en utilisant des techniques de machine reading.Nous avons effectué une analyse sémantique profonde des avis et détecté les cadres linguistiques les plus appropriés capturant des relations complexes exprimées dans les avis. Le système d'extraction des expériences vécues repose sur trois étapes. La première étape opère un filtrage des avis, basé sur les événements, permettant d'identifier les avis qui peuvent contenir des expériences vécues. La deuxième étape consiste à extraire les événements pertinents avec leurs participants. La dernière étape consiste à représenter les expériences vécues extraites de chaque avis comme un sous-graphe d'événements contenant les événements pertinents et leurs participants.Afin de tester notre hypothèse, nous avons effectué quelques expériences pour vérifier si les expériences vécues peuvent être considérées comme des motivations pour les notes attribuées par les utilisateurs dans le système de notation. Par conséquent, nous avons utilisé les expériences vécues comme des caractéristiques dans un système de classification, en comparant avec les notes associées avec des avis dans un ensemble de données extraites et annotées manuellement de Tripadvisor. Les résultats montrent que les expériences vécues sont corrélées avec les notes. Cette thèse fournit des contributions intéressantes dans le domaine de l'analyse d'opinion. Tout d'abord, l'application avec succès de machine reading afin d'identifier les expériences vécues. Ensuite, La confirmation que les expériences vécues sont liées aux notations. Enfin, l'ensemble de données produit pour tester notre hypothèse constitue également une contribution importante de la thèse. / The quantity of user-generated content on the Web is constantly growing at a fast pace.A great share of this content is made of opinions and reviews on products and services.This electronic word-of-mouth is also an important factor in decisions about purchasing these products or services. Users tend to trust other users, especially if they can compare themselves to those who wrote the reviews, or, in other words, they are confident to share some characteristics. For instance, families will prefer to travel in places that have been recommended by other families. We assume that reviews that contain lived experiences are more valuable, since experiences give to the reviews a more subjective cut, allowing readers to project themselves into the context of the writer. With this hypothesis in mind, in this thesis we aim to identify, extract, and represent reported lived experiences in customer reviews by hybridizing Knowledge Extraction and Natural Language Processing techniques in order to accelerate the decision process. Forthis, we define a lived user experience as an event mentioned in a review, where the authoris among the participants. This definition considers that mentioned events in the text are the most important elements in lived experiences : all lived experiences are based on events,which on turn are clearly defined in time and space. There fore, we propose an approach to extract events from user reviews, which constitute the basis of an event-based system to identify and extract lived experiences. For the event extraction approach, we transform user reviews into their semantic representations using machine reading techniques. We perform a deep semantic parsing of reviews, detecting the linguistic frames that capture complex relations expressed in there views. The event-based lived experience system is carried out in three steps. The first step operates an event-based review filtering, which identifies reviews that may contain lived experiences. The second step consists of extracting relevant events together with their participants. The last step focuses on representing extracted lived experiences in each review as an event sub-graph.In order to test our hypothesis, we carried out some experiments to verify whether lived experiences can be considered as triggers for the ratings expressed by users. Therefore, we used lived experiences as features in a classification system, comparing with the ratings of the reviews in a dataset extracted and manually annotated from Tripadvisor. The results show that lived experiences are actually correlated with the ratings.In conclusion, this thesis provides some interesting contributions in the field of opinionmining. First of all, the successful application of machine reading to identify lived experiences. Second, the confirmation that lived experiences are correlated to ratings. Finally,the dataset produced to test our hypothesis constitutes also an important contribution of the thesis.
|
2 |
Automatic, adaptive, and applicative sentiment analysis / Analyse de sentiments automatique, adaptative et applicativePak, Alexander 13 June 2012 (has links)
L'analyse de sentiments est un des nouveaux défis apparus en traitement automatique des langues avec l'avènement des réseaux sociaux sur le WEB. Profitant de la quantité d'information maintenant disponible, la recherche et l'industrie se sont mises en quête de moyens pour analyser automatiquement les opinions exprimées dans les textes. Pour nos travaux, nous nous plaçons dans un contexte multilingue et multi-domaine afin d'explorer la classification automatique et adaptative de polarité.Nous proposons dans un premier temps de répondre au manque de ressources lexicales par une méthode de construction automatique de lexiques affectifs multilingues à partir de microblogs. Pour valider notre approche, nous avons collecté plus de 2 millions de messages de Twitter, la plus grande plate-forme de microblogging et avons construit à partir de ces données des lexiques affectifs pour l'anglais, le français, l'espagnol et le chinois.Pour une meilleure analyse des textes, nous proposons aussi de remplacer le traditionnel modèle n-gramme par une représentation à base d'arbres de dépendances syntaxiques. Dans notre modèles, les n-grammes ne sont plus construits à partir des mots mais des triplets constitutifs des dépendances syntaxiques. Cette manière de procéder permet d'éviter la perte d'information que l'on obtient avec les approches classiques à base de sacs de mots qui supposent que les mots sont indépendants.Finalement, nous étudions l'impact que les traits spécifiques aux entités nommées ont sur la classification des opinions minoritaires et proposons une méthode de normalisation des décomptes d'observables, qui améliore la classification de ce type d'opinion en renforçant le poids des termes affectifs.Nos propositions ont fait l'objet d'évaluations quantitatives pour différents domaines d'applications (les films, les revues de produits commerciaux, les nouvelles et les blogs) et pour plusieurs langues (anglais, français, russe, espagnol et chinois), avec en particulier une participation officielle à plusieurs campagnes d'évaluation internationales (SemEval 2010, ROMIP 2011, I2B2 2011). / Sentiment analysis is a challenging task today for computational linguistics. Because of the rise of the social Web, both the research and the industry are interested in automatic processing of opinions in text. In this work, we assume a multilingual and multidomain environment and aim at automatic and adaptive polarity classification.We propose a method for automatic construction of multilingual affective lexicons from microblogging to cover the lack of lexical resources. To test our method, we have collected over 2 million messages from Twitter, the largest microblogging platform, and have constructed affective resources in English, French, Spanish, and Chinese.We propose a text representation model based on dependency parse trees to replace a traditional n-grams model. In our model, we use dependency triples to form n-gram like features. We believe this representation covers the loss of information when assuming independence of words in the bag-of-words approach.Finally, we investigate the impact of entity-specific features on classification of minor opinions and propose normalization schemes for improving polarity classification. The proposed normalization schemes gives more weight to terms expressing sentiments and lower the importance of noisy features.The effectiveness of our approach has been proved in experimental evaluations that we have performed across multiple domains (movies, product reviews, news, blog posts) and multiple languages (English, French, Russian, Spanish, Chinese) including official participation in several international evaluation campaigns (SemEval'10, ROMIP'11, I2B2'11).
|
3 |
Comprendre le fonctionnement de simulations sociales individus-centrées: application à des modèles de dynamiques d'opinionsAmblard, Frédéric 15 December 2003 (has links) (PDF)
Par l'utilisation de l'approche individus-centrée, en particulier pour la modélisation de systèmes sociaux, le modélisateur est souvent confronté au sein même de son modèle, à une des complexités majeures du système réel qu'il cherche à comprendre, à savoir la relation entre comportements individuels et comportements collectifs, qui présente dans le système réel se retrouve, par cette approche, présente également dans son modèle. Dès lors il se retrouve face à un modèle dont il ne peut que difficilement comprendre le fonctionnement même s'il en connaît les règles de fonctionnement au niveau individuel. Nous proposons ici le recours à une démarche expérimentale pour la compréhension de modèles de simulation sociale individus-centrés. De manière à cerner l'objet de cette démarche, nous exposons tout d'abord un cadre formel pour l'expression de modèles individus-centrés, qui nous permettra d'englober plusieurs grands types de modèles (automates cellulaires, microsimulation, simulation multi-agents notamment). Nous présenterons ensuite les modèles individus-centrés de l'influence sociale rencontrés dans la littérature en utilisant ce formalisme comme grille de lecture pour tenter de représenter le spectre des comportements possibles que l'on peut introduire dans le modèle. Dans une deuxième partie, nous nous intéresserons à la démarche expérimentale comme accompagnement pour la compréhension du modèle. Nous présenterons tout d'abord les différents points de vue sur le modèle que peut prendre le modélisateur (individuel, collectif, population de simulations notamment) et nous argumenterons sur la nécessaire complémentarité entre ces points de vue dans le but de comprendre le fonctionnement du modèle. Nous proposerons ensuite un environnement dédié à la gestion des plans d'expérience sur des modèles de simulation destiné à accompagner l'exploration systématique de l'espace des paramètres d'un modèle. Nous présenterons enfin une méthodologie incrémentale de construction des modèles pour nous permettre d'obtenir une compréhension construite et croissante du fonctionnement de modèles complexes envisagés comme une collection de modèles de complexité croissante. Dans une dernière partie, nous mettrons en pratique les éléments abordés précédemment en présentant une série de modèles de dynamiques d'opinions dont la compréhension est enrichie en étudiant tout d'abord des modèles très simples puis en complexifiant progressivement les modèles étudiés. Nous aborderons ainsi successivement un modèle d'interaction conditionnel en population homogène, nous ferons ensuite évoluer la dynamique des agents de ce modèle, puis nous introduirons de l'hétérogénéité dans le modèle pour finir par étudier son comportement lorsque l'on introduit un réseau social.
|
4 |
Modèles thématiques pour la découverte non supervisée de points de vue sur le Web / Topic Models for Unsupervised Discovery of Viewpoints on the WebThonet, Thibaut 23 November 2017 (has links)
Les plateformes en ligne telles que les blogs et les réseaux sociaux permettent aux internautes de s'exprimer sur des sujets d'une grande variété (produits commerciaux, politique, services, etc.). Cet important volume de données d'opinions peut être exploré et exploité grâce à des techniques de fouille de texte connues sous le nom de fouille d'opinions ou analyse de sentiments. Contrairement à la majorité des travaux actuels en fouille d'opinions, qui se focalisent sur les opinions simplement positives ou négatives (ou un intermédiaire entre ces deux extrêmes), nous nous intéressons dans cette thèse aux points de vue. La fouille de point de vue généralise l'opinion au delà de son acception usuelle liée à la polarité (positive ou négative) et permet l'étude d'opinions exprimées plus subtilement, telles que les opinions politiques. Nous proposons dans cette thèse des approches non supervisées - ne nécessitant aucune annotation préalable - basées sur des modèles thématiques probabilistes afin de découvrir simultanément les thèmes et les points de vue exprimés dans des corpus de textes d'opinion. Dans notre première contribution, nous avons exploré l'idée de différencier mots d'opinions (spécifiques à la fois à un point de vue et à un thème) et mots thématiques (dépendants du thème mais neutres vis-à-vis des différents points de vue) en nous basant sur les parties de discours, inspirée par des pratiques similaires dans la littérature de fouille d'opinions classique - restreinte aux opinions positives et négatives. Notre seconde contribution se focalise quant à elle sur les points de vue exprimés sur les réseaux sociaux. Notre objectif est ici d'analyser dans quelle mesure l'utilisation des interactions entre utilisateurs, en outre de leur contenu textuel généré, est bénéfique à l'identification de leurs points de vue. Nos différentes contributions ont été évaluées et comparées à l'état de l'art sur des collections de documents réels. / The advent of online platforms such as weblogs and social networking sites provided Internet users with an unprecedented means to express their opinions on a wide range of topics, including policy and commercial products. This large volume of opinionated data can be explored and exploited through text mining techniques known as opinion mining or sentiment analysis. Contrarily to traditional opinion mining work which mostly focuses on positive and negative opinions (or an intermediate in-between), we study a more challenging type of opinions: viewpoints. Viewpoint mining reaches beyond polarity-based opinions (positive/negative) and enables the analysis of more subtle opinions such as political opinions. In this thesis, we proposed unsupervised approaches – i.e., approaches which do not require any labeled data – based on probabilistic topic models to jointly discover topics and viewpoints expressed in opinionated data. In our first contribution, we explored the idea of separating opinion words (specific to both viewpoints and topics) from topical, neutral words based on parts of speech, inspired by similar practices in the litterature of non viewpoint-related opinion mining. Our second contribution tackles viewpoints expressed by social network users. We aimed to study to what extent social interactions between users – in addition to text content – can be beneficial to identify users' viewpoints. Our different contributions were evaluated and benchmarked against state-of-the-art baselines on real-world datasets
|
5 |
Analyse et contrôle de systèmes de dynamiques d'opinions / Analysis and control of opinion dynamicsDietrich, Florian 22 November 2017 (has links)
Les dynamiques d'opinions suscitent un regain d'intérêt de la part des communautés d'Automatique et de Mathématiques Appliquées. Cela peut s'expliquer par l'émergence des réseaux sociaux en ligne et de la possibilité d'exploiter et comprendre les comportements et données associés. Les modèles de dynamiques d'opinions sont des cas particuliers de systèmes multi-agents. Ces systèmes ont des applications diverses comme par exemple le contrôle du comportement d'une flotte de robots collaboratifs. Un système de dynamique d'opinions est ainsi constitué de plusieurs agents. L'état de chaque agent est alors modélisé par un réel qui représente l'opinion de celui-ci à propos d'un certain sujet. Les modèles mathématiques de dynamiques d'opinions décrivent alors l'évolution des opinions des agents dans le temps. De nombreux résultats ont été obtenus sur le régime asymptotique de ces systèmes, notamment sur la convergence vers le consensus, lorsque les opinions de tous les agents du système tendent vers la même valeur. Le régime transitoire, moins bien connu, présente également des phénomènes intéressants comme la formation d'accords locaux transitoires mais qui sont plus délicats à définir. Une étude de ces phénomènes est présentée pour des systèmes de dynamiques d'opinions à temps discret avec fonctions d'influence génériques dépendant de l'état. La contribution principale propose un critère de détection de la formation de ces accords locaux, ainsi que la prédiction de la durée pendant laquelle ce critère est vérifié. La seconde partie de cette thèse se concentre sur les dynamiques d'opinions en temps continu dont un des agents, appelé leader, a un rôle particulier : l'évolution de son opinion est contrôlable. Le leader est utilisé pour rassembler tous les agents dans son voisinage en temps fini, puis pour les amener vers une valeur de consensus désirée. La loi de commande proposée est valide pour des systèmes à fonctions d'influence dépendant du temps et de l'état et sous certaines conditions. De plus, le problème de contrôle en temps optimal consistant à rassembler tous les agents dans le voisinage du leader en temps minimal est examiné. Ceci est effectué dans le cas particulier de fonctions d'influence dépendant uniquement de l'état. Afin de déterminer la classe des commandes optimales admissible, le Principe du Maximum de Pontryagin est utilisé. Dans un cadre général, la commande optimale est précisée sous la forme de relations implicites. Pour le cas particulier où il n'y a pas d'interaction entre les agents, la loi de commande en temps optimal a été obtenue en pratique pour toute condition initiale / Opinion dynamics systems aroused renewed interest in the Control System Theory and Applied Mathematics communities. This can be explained by the emergence of online social networks and the possibility of exploiting and understanding associated behaviours and data. Opinion dynamic models are special cases of multi-agent systems. These systems have various applications such as controlling the behaviour of a fleet of collaborative robots. A system of opinion dynamics is thus composed of several agents. The state of each agent is then modeled by a real number, which represents the agent's opinion on a certain subject. The mathematical models of opinion dynamics then describe the evolution of agents' opinions over time. Many results have been obtained on the asymptotic behaviour of these systems, notably on convergence towards consensus, when the opinion of all agents of the system tend towards the same value. The less well known transient state also presents interesting phenomena such as the formation of local transient agreements, which are more tricky to define. A study of these phenomena is presented for discrete-time opinion dynamics systems with generic state dependent influence functions. The main contribution proposes a criterion for detecting the formation of these local agreements, as well as a prediction of the duration during which this criterion is verified. The second part of this thesis focuses on opinion dynamics in continuous time in which one of the agents, called leader, has a particular role: the evolution of its opinion is controllable. For systems with time and state-dependent influence functions and under certain conditions, a control law is presented that allows the leader to gather all agents in its neighbourhood in finite time and then steer them to a desired consensus value. In addition, the problem of time optimal control which consists in bringing all agents together in the neighborhood of the leader in minimal time is also examined for the case of only state-dependent influence functions. The Pontryagin Maximum Principle specifies the class of admissible optimal controls with implicit expressions within a general framework. For the particular case where there is no interaction between agents, the time-optimal control law has been obtained in practice for any initial conditions
|
6 |
Analyse d'opinion dans les interactions orales / Opinion analysis in speech interactionsBarriere, Valentin 15 April 2019 (has links)
La reconnaissance des opinions d'un locuteur dans une interaction orale est une étape cruciale pour améliorer la communication entre un humain et un agent virtuel. Dans cette thèse, nous nous situons dans une problématique de traitement automatique de la parole (TAP) sur les phénomènes d'opinions dans des interactions orales spontanées naturelles. L'analyse d'opinion est une tâche peu souvent abordée en TAP qui se concentrait jusqu'à peu sur les émotions à l'aide du contenu vocal et non verbal. De plus, la plupart des systèmes récents existants n'utilisent pas le contexte interactionnel afin d'analyser les opinions du locuteur. Dans cette thèse, nous nous penchons sur ces sujet. Nous nous situons dans le cadre de la détection automatique en utilisant des modèles d’apprentissage statistiques. Après une étude sur la modélisation de la dynamique de l'opinion par un modèle à états latents à l’intérieur d'un monologue, nous étudions la manière d’intégrer le contexte interactionnel dialogique, et enfin d'intégrer l'audio au texte avec différents types de fusion. Nous avons travaillé sur une base de données de Vlogs au niveau d'un sentiment global, puis sur une base de données d'interactions dyadiques multimodales composée de conversations ouvertes, au niveau du tour de parole et de la paire de tours de parole. Pour finir, nous avons fait annoté une base de données en opinion car les base de données existantes n'étaient pas satisfaisantes vis-à-vis de la tâche abordée, et ne permettaient pas une comparaison claire avec d'autres systèmes à l'état de l'art.A l'aube du changement important porté par l’avènement des méthodes neuronales, nous étudions différents types de représentations: les anciennes représentations construites à la main, rigides mais précises, et les nouvelles représentations apprises de manière statistique, générales et sémantiques. Nous étudions différentes segmentations permettant de prendre en compte le caractère asynchrone de la multi-modalité. Dernièrement, nous utilisons un modèle d'apprentissage à états latents qui peut s'adapter à une base de données de taille restreinte, pour la tâche atypique qu'est l'analyse d'opinion, et nous montrons qu'il permet à la fois une adaptation des descripteurs du domaine écrit au domaine oral, et servir de couche d'attention via son pouvoir de clusterisation. La fusion multimodale complexe n'étant pas bien gérée par le classifieur utilisé, et l'audio étant moins impactant sur l'opinion que le texte, nous étudions différentes méthodes de sélection de paramètres pour résoudre ces problèmes. / 2588/5000Recognizing a speaker's opinions in an oral interaction is a crucial step in improving communication between a human and a virtual agent. In this thesis, we find ourselves in a problematic of automatic speech processing (APT) on opinion phenomena in natural spontaneous oral interactions. Opinion analysis is a task that is not often addressed in TAP that focused until recently on emotions using voice and non-verbal content. In addition, most existing legacy systems do not use the interactional context to analyze the speaker's opinions. In this thesis, we focus on these topics.We are in the context of automatic detection using statistical learning models. A study on modeling the dynamics of opinion by a model with latent states within a monologue, we study how to integrate the context interactional dialogical, and finally to integrate audio to text with different types of fusion. We worked on a basic Vlogs data at a global sense, and on the basis of multimodal data dyadic interactions composed of open conversations, at the turn of speech and word pair of towers. Finally, we annotated database in opinion because existing database were not satisfactory vis-à-vis the task addressed, and did not allow a clear comparison with other systems in the state art.At the dawn of significant change brought by the advent of neural methods, we study different types of representations: the ancient representations built by hand, rigid, but precise, and new representations learned statistically, and general semantics. We study different segmentations to take into account the asynchronous nature of multi-modality. Recently, we are using a latent state learning model that can adapt to a small database, for the atypical task of opinion analysis, and we show that it allows both an adaptation of the descriptors of the written domain to the oral domain, and serve as an attention layer via its clustering power. Complex multimodal fusion is not well managed by the classifier used, and audio being less impacting on opinion than text, we study different methods of parameter selection to solve these problems.
|
7 |
Similarités de données textuelles pour l'apprentissage de textes courts d'opinions et la recherche de produits / Textual data similarities for learning short opinion texts and retrieving productsTrouvilliez, Benoît 13 May 2013 (has links)
Cette thèse porte sur l'établissement de similarités de données textuelles dans le domaine de la gestion de la relation client. Elle se décline en deux parties : - l'analyse automatique de messages courts en réponse à des questionnaires de satisfaction ; - la recherche de produits à partir de l'énonciation de critères au sein d'une conversation écrite mettant en jeu un humain et un programme agent. La première partie a pour objectif la production d'informations statistiques structurées extraites des réponses aux questions. Les idées exprimées dans les réponses sont identifiées, organisées selon une taxonomie et quantifiées. La seconde partie vise à transcrire les critères de recherche de produits en requêtes compréhensibles par un système de gestion de bases de données. Les critères étudiés vont de critères relativement simples comme la matière du produit jusqu'à des critères plus complexes comme le prix ou la couleur. Les deux parties se rejoignent sur la problématique d'établissement de similarités entre données textuelles par des techniques de TAL. Les principales difficultés à surmonter sont liées aux caractéristiques des textes, rédigés en langage naturel, courts, et comportant fréquemment des fautes d'orthographe ou des négations. L'établissement de similarités sémantiques entre mots (synonymie, antonymie, etc) et l'établissement de relations syntaxiques entre syntagmes (conjonction, opposition, etc) sont également des problématiques abordées. Nous étudions également dans cette thèse des méthodes de regroupements et de classification automatique de textes afin d'analyser les réponses aux questionnaires de satisfaction. / This Ph.D. thesis is about the establishment of textual data similarities in the client relation domain. Two subjects are mainly considered : - the automatic analysis of short messages in response of satisfaction surveys ; - the search of products given same criteria expressed in natural language by a human through a conversation with a program. The first subject concerns the statistical informations from the surveys answers. The ideas recognized in the answers are identified, organized according to a taxonomy and quantified. The second subject concerns the transcription of some criteria over products into queries to be interpreted by a database management system. The number of criteria under consideration is wide, from simplest criteria like material or brand, until most complex criteria like color or price. The two subjects meet on the problem of establishing textual data similarities thanks to NLP techniques. The main difficulties come from the fact that the texts to be processed, written in natural language, are short ones and with lots of spell checking errors and negations. Establishment of semantic similarities between words (synonymy, antonymy, ...) and syntactic relations between syntagms (conjunction, opposition, ...) are other issues considered in our work. We also study in this Ph. D. thesis automatic clustering and classification methods in order to analyse answers to satisfaction surveys.
|
8 |
Identification de opiniónes de differentes fuentes en textos en español / Identification d'opinions issues de diverses sources dans des textes en espagnol / Identification of opinions from different sources in Spanish textsRosá, Aiala 28 September 2011 (has links)
Ce travail présente une étude linguistique des expressions d'opinions issues de différentes sources dans des textes en espagnol. Le travail comprend la définition d'un modèle pour les prédicats d'opinion et leurs arguments (la source, le sujet et le message), la création d'un lexique de prédicats d'opinions auxquels sont associées des informations provenant du modèle et la réalisation de trois systèmes informatiques.Le premier système, basé sur des règles contextuelles, obtient de bons résultats pour le score de F-mesure partielle: prédicat, 92%; source, 81%; sujet, 75%; message, 89%, opinion, 85%. En outre, l'identification de la source donne une valeur de 79% de F-mesure exacte. Le deuxième système, basé sur le modèle Conditional Random Fields (CRF), a été développé uniquement pour l'identification des sources, donnant une valeur de 76% de F-mesure exacte. Le troisième système, qui combine les deux techniques (règles et CRF), donne une valeur de 83% de F-mesure exacte, montrant ainsi que la combinaison permet d'obtenir des résultats intéressants.En ce qui concerne l'identification des sources, notre système, comparé à des travaux réalisés sur des corpus d'autres langues que l'espagnol, donne des résultats très satisfaisants. En effet ces différents travaux obtiennent des scores qui se situent entre 63% et 89,5%.Par ailleurs, en sus des systèmes réalisés pour l'identification de l'opinion, notre travail a débouché sur la construction de plusieurs ressources pour l'espagnol : un lexique de prédicats d'opinions, un corpus de 13000 mots avec des annotations sur les opinions et un corpus de 40000 mots avec des annotations sur les prédicats d'opinion et les sources. / This work presents a study of linguistic expressions of opinion from different sources in Spanish texts. The work includes the definition of a model for opinion predicates and their arguments (source, topic and message), the creation of a lexicon of opinion predicates which have information from the model associated, and the implementation of three systems.The first system, based on contextual rules, gets good results for the F-measure score (partial match): predicate, 92%; source, 81%; topic, 75%; message, 89%; full opinion, 85%. In addition, for source identification the F-measure for exact match is 79%. The second system, based on Conditional Random Fields (CRF), was developed only for the identification of sources, giving 76% of F-measure (exact match). The third system, which combines the two techniques (rules and CRF), gives a value of 83% of F-measure (exact match), showing that the combination yields interesting results.As regards the identification of sources, our system compared to other work developed for languages other than Spanish, gives very satisfactory results. Indeed these works had scores that fall between 63% and 89.5%.Moreover, in addition to the systems made for the identification of opinions, our work has led to the construction of several resources for Spanish: a lexicon of opinion predicates, a 13,000 words corpus with opinions annotated and a 40,000 words corpus with opinion predicates end sources annotated.
|
9 |
De l'empowerment à l'engagement du client sur les plateformes en ligne : ou comment favoriser l'activité des clients sur InternetMorrongiello, Caroline 25 June 2014 (has links) (PDF)
Intérêt du sujet : Avec l'avènement du web2.0, l'influence interpersonnelle inclut désormais son extension dans le cyberespace avec le bouche-à-oreille électronique (eBAO). Internet modifie ainsi en profondeur les relations établies avec les consommateurs et conduit à une redéfinition de la relation marque -consommateur. Le web 2.0 apparaît ainsi comme un outil formidable au rééquilibrage des pouvoirs entre eux. Cependant, au-delà de ce constat, nous nous interrogeons quant à l'asymétrie entre les consommateurs et les marques dans ces conversations : le marketing est-il prêt à jouer le jeu ? Quelle perception le consommateur a-t-il de ce rééquilibrage ? Objectif de recherche : L'objectif de cette recherche est de comprendre les perceptions du web 2.0 par les consommateurs et les comportements qui en résultent. Thèse défendue : Face à cette redéfinition des relations entre consommateurs et entreprises, nous suggérons que les entreprises souhaitant des consommateurs engagés doivent accepter de céder une partie du pouvoir. Contribution attendue : Cette thèse vise à contribuer aux études précédentes et à pallier leurs limites. Alors que la littérature académique étudie les motivations des consommateurs à poster des avis en ligne en général (Hennig-Thurau et al, 2004 ; Sher et Lee, 2009), il manque des études empiriques considérant l'impact de facteurs individuels des consommateurs sur leur participation et sur leur engagement vis-à-vis d'une marque en particulier sur le web 2.0. Nous chercherons ainsi à comprendre le rôle des capacités de pouvoir du consommateur sur cette participation et cet engagement en ligne. Méthode : Une combinaison des approches qualitatives et quantitatives a constitué notre méthodologie de recherche. Dans un premier temps, une étude qualitative et une étude quantitative ont été réalisées auprès des consommateurs dans un contexte touristique. Celle-ci s'est déroulée en collaboration avec les offices de tourisme du Grand Bornand et d'Aix les Bains. Dans un deuxième temps, une expérimentation a été réalisée auprès des jeunes consommateurs (de 18 à 30 ans) dans le secteur spécifique des Smartphones et des tablettes mobiles. Principaux résultats : L'étude exploratoire nous a permis de souligner dans un premier temps les multiples paradoxes générés par l'eBAO diffusé sur les plateformes d'opinions. L'eBAO apparaît comme utile pour les consommateurs et les entreprises, cependant, un fort scepticisme règne face à celles-ci. La première étude quantitative nous a permis de mettre en avant les facteurs de participation et d'engagement : l'aide à l'entreprise, la sincérité perçue des avis postés, le scepticisme des consommateurs concernant les pratiques en ligne et l'attachement à la marque. D'une manière générale, nous constatons la volonté des consommateurs d'influencer. La seconde étude quantitative, l'expérimentation, nous montre que les caractéristiques des plateformes d'opinions en ligne ont un impact sur l'intention d'engagement et le comportement engageant. Cette étude nous montre l'importance de la véracité des commentaires en ligne et le risque infime de voir une plateforme d'opinions se transformer en défouloir.
|
10 |
Analyse automatique d'opinion : problématique de l'intensité et de la négation pour l'application à un corpus journalistiqueZhang, Lei 11 December 2012 (has links) (PDF)
La problématique de l'analyse d'opinion connaît un intérêt croissant depuis une quinzaine d'années. Cette problématique mène à de nombreux travaux ayant des objectifs allant de la constitution de ressources lexicales à l'identification des cibles d'une opinion. Le cadre applicatif de notre étude est l'analyse automatique d'articles de journaux pour la veille d'opinion. Ce cadre est ambitieux vis-à-vis de l'état de l'art puisque nous sommes amené à étudier un grand nombre de critères propres à l'analyse d'opinion. Nous proposons un modèle conceptuel permettant de caractériser une opinion par la polarité, l'intensité, la prototypicalité, la cible, la source, l'engagement de l'auteur, etc. En particulier, nous modélisons la négation et ses effets sur l'intensité et la polarité. En plus des cas classiques de négation, nous sommes en mesure de modéliser des effets de rhétoriques tels que l'euphémisme ou la litote, très présents dans le genre journalistique. À partir de ce modèle conceptuel, nous présentons un ensemble de choix techniques permettant de préciser les ressources et traitements nécessaires à l'automatisation. Nous mettons en œuvre deux applications (en chinois et en français) de la chaîne de traitements issue du modèle permettant de confirmer la validité du modèle conceptuel ainsi que l'efficacité des traitements automatiques.
|
Page generated in 0.0853 seconds