1 |
Déformation de courbes et surfaces multirésolution sous contraintesSauvage, Basile 07 December 2005 (has links) (PDF)
Dans le domaine de la modélisation géométrique comme dans le domaine de l'informatique graphique, les utilisateurs sont toujours en quête d'outils ergonomiques pour éditer et déformer des courbes et des surfaces. La construction de ces outils nécessite d'abord un choix pertinent de modèles mathématiques pour représenter ces objets géométriques. Ensuite, l'adjonction de contraintes géométriques, intégrées dans l'outil d'édition, peut faciliter la manipulation.<br /><br />L'objet de ce manuscrit est d'étudier l'intégration de contraintes non linéaires dans la déformation multirésolution de courbes et de surfaces lisses. Nous abordons successivement la conservation de l'aire inscrite dans une courbe B-spline plane, la conservation du volume englobé par une surface B-spline, la conservation du volume englobé par une surface de topologie arbitraire (paramétrée sur un maillage triangulaire), et la conservation de la longueur d'une courbe linéaire par morceaux. Les modèles multirésolution, basés sur des analyses en ondelettes, permettent de créer aisément des déformations à différentes échelles sur des objets complexes, tout en conservant les détails fins. Les contraintes sont calculées dans la base multirésolution, puis intégrées grâce à des optimisations sous contraintes. Les déformations gagnent ainsi en réalisme, sans que l'utilisateur n'ait à intervenir. Les méthodes que nous développons fonctionnent interactivement, et sont étudiées pour s'adapter à différents types de déformations.
|
Page generated in 0.116 seconds