1 |
Sur la définition et la reconnaissance des formes planes dans les images numériquesMusé, Pablo 01 October 2004 (has links) (PDF)
Cette thèse traite de la reconnaissance des formes dans les images numériques. Une représentation appropriée des formes est déduite de l'analyse des perturbations qui n'affectent pas la reconnaissance : changement de contraste, occlusion partielle, bruit, perspective. Les atomes de cette représentation, appelés "éléments de forme", fournissent des descriptions semi-locales des formes. L'appariement de ces éléments permet de reconnaitre des formes partielles. Les formes globales sont alors définies comme des groupes de formes partielles présentant une cohérence dans leur disposition spatiale. L'aspect fondamental de ce travail est la mise en place de seuils non-supervisés, à tous les niveaux de décision du processus de reconnaissance. Nous proposons des règles de décision pour la en correcpondance de formes partielles ainsi que pour la détection de formes globales. Le cadre proposé est basé sur une méthodologie générale de la détection dans laquelle un événement est significatif s'il n'est pas susceptible d'arriver par hasard.
|
2 |
Détection de changements et classification sous-pixelliques en imagerie satellitaire. Application au suivi temporel des surfaces continentales.Robin, Amandine 21 May 2007 (has links) (PDF)
Dans cette thèse, nous nous intéressons à l'analyse et au suivi temporel des surfaces continentales à partir de séquences d'images satellitaires. L'exploitation de données de différentes résolutions est alors cruciale pour bénéficier à la fois d'une bonne discrimination et d'une bonne localisation des objets d'intérêt. Dans ce contexte, nous proposons deux approches probabilistes pour la classification et la détection de changements capables d'accéder à une information sous-pixelique, avec très peu d'information a priori. La premire repose sur la définition d'une fonction d'énergie dans un cadre bayésien. Etant donné un nombre de classes, elle permet d'estimer la classification de manière non-supervisée en tant que minimum de cette fonction d'énergie, à travers un algorithme de recuit simulé. La seconde repose sur un modèle de détection a-contrario couplé à un algorithme stochastique d'échantillonnage aléatoire. Elle permet de détecter automatiquement les pixels de l'image qui représentent le plus vraisemblablement des changements. Une analyse théorique et expérimentale des méthodes proposées a permis d'en cerner les limites et, en particulier, de montrer leur capacité à traîter de forts rapports de résolution. Des cas réels d'applications sont présentés sur une scène agricole de la Plaine du Danube (base de donnes ADAM).
|
3 |
Sur quelques problèmes mathématiques en analyse d'images et vision stéréoscopiqueAlmansa, Andrés 01 December 2005 (has links) (PDF)
.
|
Page generated in 0.1325 seconds