• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 322
  • 171
  • 73
  • 36
  • 30
  • 23
  • 8
  • 8
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 825
  • 140
  • 96
  • 95
  • 95
  • 74
  • 73
  • 61
  • 61
  • 55
  • 54
  • 53
  • 52
  • 51
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optimization of the operation of Wallace Dam and Sinclair Dam as a pumped storage development

Patrick, James Owen 05 1900 (has links)
No description available.
12

Numerical analysis and shape optimisation of concrete gravity dams

Abuladze, Vissarion January 1996 (has links)
The Finite Element and Boundary Element Methods are both well established numerical techniques for analysing a wide range of engineering problems. In the present thesis these numerical techniques are used for obtaining a more realistic picture of various characteristics of concrete gravity dams. The present work addresses the behaviour of gravity dams under static loading, and the developed analysis procedure/computer package can cater for a wide range of dam characteristics including: the three-dimensional behaviour of a gravity dam-foundation-abutments system; the non-linear behaviour of a dam and foundation materials; the sequential construction of a dam and impounding of the reservoir loading on the structure; the effect on stresses of interfaces and joints existing between a dam and its foundation, and in the body of a dam itself; the action of pore water pressure within the foundation, at the dam-foundation interface, and in the body of a gravity dam; etc. Using the purpose written computer package which can cater (in an efficient and accurate way) for the influence of all such factors, mathematical programming methods are, then, used to produce a powerful tool for the shape optimisation of gravity dams leading to safe, functional and economical solutions to the problem. In the course of developing the computer program, much care has been exercised as regards the appropriate selection of the finite element types, mesh configurations and mesh densities, in order to reflect (in an efficient fashion) the variation of stress gradients in the body of a gravity dam. In order to reduce high costs associated with a full three-dimensional analysis, a rather efficient method is developed which enables one to carry out equivalent twodimensional computer runs which will effectively simulate the actual three-dimensional behaviour of gravity dams in, for example, narrow valleys. The proposed approach reduces the dimensionality of an actual problem by one, thus, eliminating the main disadvantage of the finite element method in terms of high solution costs for threedimensional problems. As a result, the proposed method makes the solution procedure highly cost effective. By coupling the finite element-boundary element (FEBE) techniques, which can cater for the material non-linearities in the appropriate regions of the foundation, an attempt is made to by-pass the individual disadvantages of both these numerical techniques. It has, then, been possible to exploit the advantages of reducing the dimensionality of the foundation region by one using the boundary element technique, and, hence, come up with significant savings in terms of computer running times. Anisotropic tangent constitutive models for plain concrete under a general state of biaxial static monotonic loading for, both, plane-stress and plane-strain states of stresses are proposed which are simple in nature, and use data readily available from uniaxial tests. These models have been implemented into the computer program which is, then, used to investigate the influence of the step-by-step construction of the dam and the sequential impoundment of the reservoir loading on the state of stresses. The non-linear program is also used to analyse various characteristics of Bratsk concrete gravity darn (in Russia). The correlations between the numerical results and extensive field measurements on this darn, have been found to be encouraging. Isoparametric quadratic interface finite elements for analysing the darnfoundation interaction problem have also been developed. These elements have zero thickness and are based on an extension of the linear interface elements reported by others. The numerical problems of ill-conditioning (usually associated with zero thickness elements) are critically investigated using test examples, and have been found to be due to inadequate finite element mesh design. Non-linear elastic tangent constitutive models for simulating the shear stress-relative displacement behaviour of interfaces have also been developed, and are used to analyse the effects of including interface elements at the dam-foundation region of contact. It is shown that the inclusion of interface elements in the numerical analyses of the dam-foundation system leads to rather significant changes in the magnitudes of the critical tensile stresses acting at the heel of the dam, which have previously been evaluated (by others) using a rigid dam-foundation interconnection scheme. Effects of pore water pressure, acting as a body force throughout the foundation, the dam-foundation interface and the body of a gravity dam, are also critically studied, with the pore pressure values predicted by seepage analysis. Using an extensive set of numerical studies, a number of previously unresolved issues as regards the influence of pore pressures on the state of stresses are clarified. The effect of drainage on the state of stresses within the body of a dam is investigated, and an insight is also given into the effect of the uplift acting at the lift lines between successive layers of Roller Compacted Concrete (ReC) dams. A shape optimisation procedure for gravity dams based on the penalty function method and a sequential unconstrained minimisation technique is also developed. A number of shape optimisations of idealised gravity dams are carried out in order to compare the numerical results with previously available analytical solutions. The present work also caters for the effects of foundation elasticity and uplift on the optimal shape of a gravity dam. A numerical example is provided covering the shape optimisation of a hollow gravity dam. Finally, the shape optimisation of an actual dam (i.e. Tvishi gravity dam in Georgia) using the presently proposed procedures is carried out with the fmal results compared with those available from the project design team. Wherever possible. numerical outputs have been checked against available small or full scale test data or previously reported closed form solutions. Throughout this thesis very encouraging correlations between the present predictions and such experimental and theoretical data have been obtained.
13

Environment, socioeconomic change and sustainability in a Nigerian floodplain wetland

Thomas, David Haydon Lewis January 1995 (has links)
No description available.
14

Performance-based seismic design of reservoir intake towers

Eshghi, Sassan January 1998 (has links)
No description available.
15

River response to dam removal: the Souhegan River and the Merrimack Village Dam, Merrimack, New Hampshire

Pearson, Adam Jeffrey January 2010 (has links)
Thesis advisor: Noah P. Snyder / The Souhegan River is a tributary of the Merrimack River that drains a 443 km<super>2</super> watershed in southern New Hampshire. The lowermost barrier on the Souhegan River, the Merrimack Village Dam (MVD), was demolished and removed in August and September 2008. The modern MVD impoundment contained at least 62,000 m<super>3</super> of sediment, mostly sand. Analysis of topographic and historical maps, and photographs suggests that approximately twice the area of what is now the modern impoundment has been affected by over 200 years of damming at the site. I use repeat surveys of cross sections and the river longitudinal profile, and sediment samples, to document the response of the Souhegan River to the MVD removal. A base level drop of 3.9 m caused immediate incision of the sand-sized sediment and channel widening. The impoundment later segmented into a non-alluvial, bedrock and boulder controlled reach; and a quasi-alluvial sand and gravel reach with erosion and deposition modulated by the presence of vegetation on the channel banks. One year after the removal, the Souhegan River has excavated 38,100 m<super>3</super> (65%) of the sediment in the modern impoundment. The response of the Souhegan River was rapid and the channel and floodplain continue to evolve toward a quasi-equilibrium configuration. Continued response will be substantially influenced by the establishment of vegetation within the former impoundment and the magnitude and frequency of high discharge events. / Thesis (MS) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Geology and Geophysics.
16

Vegetation Community Response to Hydrologic and Geomorphic Changes Following Dam Removal in a New England River

Lisius, Grace L. January 2016 (has links)
Thesis advisor: Noah P. Snyder / Dam removal is typically used to restore fish passage, natural flow regimes, and sediment transport in streams. However, dam removal also impacts the riparian vegetation, a change that can have wider effects throughout the ecosystem. Quantifying vegetation change requires a multi-year record to document pre-removal communities and both the immediate and delayed responses. In this study, vegetation change was assessed at the Merrimack Village Dam on the Souhegan River in Merrimack, NH, which was removed in August 2008. The removal caused a ~3 meter drop in water level and rapid erosion of impounded sediment, with ~50% removed in the first three months. The vegetation was sampled using plots at specific intervals along 7 monumented transects that were perpendicular to the channel or adjacent wetland. Tree, shrub, and herbaceous communities were assessed using species percent areal coverage techniques in July 2007, 2009, 2014 and 2015. Change over time was quantified using Analysis of Similarity (ANOSIM) on the Bray-Curtis dissimilarity matrix. As expected, vegetation communities in control plots upstream of the impoundment did not show significant change during the study period. Tree and shrub communities adjacent to the impoundment also did not show significant change. All herbaceous communities adjacent to the impoundment changed significantly (p < 0.05). The herbaceous plots closest to the channel changed to bare sand in 2009 due to erosion in the former impoundment, but by 2014 the riparian fringe community seen in 2007 had re-established and expanded in this area, but at a lower elevation. Between 2007 and 2014, the wetland herbaceous community changed from aquatic species to a stable terrestrial community that persisted without significant change in 2015. From 2007 to 2014, the vegetation community on a mid-channel island of impoundment sand changed from a community with ~50% invasive reed canary grass to a ~98% community of invasive black swallowwort, a species not recorded at the site pre-removal. The vegetation response was greatest in areas with largest geomorphic and hydrologic change, such as along the channel margin where erosion and bank slumping created an unstable scarp or on the mid-channel island and off-channel wetland strongly impacted by the lowered water table. However, large unvegetated areas never persisted nor did the areal coverage of invasive species expand: two common concerns of dam removals. / Thesis (BS) — Boston College, 2016. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Scholar of the College. / Discipline: Earth and Environmental Sciences.
17

Engineering geology in the construction of Kangaroo Creek Dam

Trudinger, John Philip. January 1970 (has links) (PDF)
No description available.
18

Hyporheic flow in a mountainous riverine system

Janzen, Kimberely Fay 26 August 2008
Investigation into the effects of beaver dams on hyporheic exchange in peat dominated mountainous streams is needed to better understand stream-floodplain connections and improve our overall conceptual model of water storage and flow through riverine valleys. The objective of this study was to determine the influence of instream beaver dams on vertical and lateral hyporheic exchanges. Hyporheic interactions were examined using hydrometric methods to determine both flow pathways and water fluxes for a second-order stream draining a Canadian Rocky Mountain peatland. Investigation was conducted on two instream beaver dams and an undammed reference section for the ice free periods of summers 2006 and 2007 at the Sibbald Reseach Basin located in Kananaskis Country, Alberta, Canada. Lateral hyporheic fluxes dominated over vertical hyporheic fluxes, due to a layer with low saturated hydraulic conductivity (K &sim 10<sup>−7</sup> 10<sup>−9</sup> m/s) just below the streambed throughout most of the study reach. The lateral flow around the north dam (> 0.6 m high) resulted in fluxes that ranged from 0.002 to 0.015 L/s in the near bank environment. These results confirm that hydraulic properties of the substrata are an important factor in the development of hyporheic exchange in stream systems draining peatlands. Results also demonstrate the ability of beaver to connect valley floors to their streams, which maintains seasonally stable water tables and wetland conditions in the riparian zone.
19

Hyporheic flow in a mountainous riverine system

Janzen, Kimberely Fay 26 August 2008 (has links)
Investigation into the effects of beaver dams on hyporheic exchange in peat dominated mountainous streams is needed to better understand stream-floodplain connections and improve our overall conceptual model of water storage and flow through riverine valleys. The objective of this study was to determine the influence of instream beaver dams on vertical and lateral hyporheic exchanges. Hyporheic interactions were examined using hydrometric methods to determine both flow pathways and water fluxes for a second-order stream draining a Canadian Rocky Mountain peatland. Investigation was conducted on two instream beaver dams and an undammed reference section for the ice free periods of summers 2006 and 2007 at the Sibbald Reseach Basin located in Kananaskis Country, Alberta, Canada. Lateral hyporheic fluxes dominated over vertical hyporheic fluxes, due to a layer with low saturated hydraulic conductivity (K &sim 10<sup>−7</sup> 10<sup>−9</sup> m/s) just below the streambed throughout most of the study reach. The lateral flow around the north dam (> 0.6 m high) resulted in fluxes that ranged from 0.002 to 0.015 L/s in the near bank environment. These results confirm that hydraulic properties of the substrata are an important factor in the development of hyporheic exchange in stream systems draining peatlands. Results also demonstrate the ability of beaver to connect valley floors to their streams, which maintains seasonally stable water tables and wetland conditions in the riparian zone.
20

Studies on field stabilization methods to prevent surficial slope failures of earthfill dams

Dronamraju, Venkata Subrahmanyam January 2008 (has links)
Thesis (Ph.D.)--University of Texas at Arlington, 2008.

Page generated in 0.0319 seconds