• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 19
  • 18
  • 16
  • 14
  • 13
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Stanovení životnosti dolního integrálního panelu křídla letounu L410 NG filozofií damage tolerance / Damage tolerance evaluation of L410 NG aircraft lower wing integrally stiffened panel

Vlček, Dalibor January 2013 (has links)
Master’s thesis deals with the damage tolerance evaluation of L410 NG aircraft lower wing integrally stiffened panel including crack growth and residual strength analyses and inspection program proposal. Presented DT evaluation has been done using FE model of the wing and AFGROW software.
32

In-plane compression of preconditioned carbon/epoxy panels

Rivera, Luis A. January 2004 (has links)
This thesis investigates the effects of damage characteristics on residual compressive strength (RCS) of 4-mm thick preconditioned carbon/epoxy quasi-isotropic panels through the study of their compressive behaviour. Results of 2-mm thick preconditioned panels mostly from a previous study are also analysed. The preconditions of varying sizes include impact damage, quasi-static damage, single and multiple artificial delaminations of circular and elliptical shapes embedded at different through-the-thickness (TTT) locations, hemispherical-shaped domes of different curvature and depth and open holes. The mechanisms of impact damage and the characteristics of energy absorption were dependent on panel thickness and incident kinetic energy (IKE). A damage threshold for compressive strength (CS) reduction was found at 455-mm2 and 1257 mm2 for 2- and 4-mm thick panels, respectively. Panels affected by the presence of internal delaminations followed a sequence of prebuckling, local and global buckling (mode I) and postbuckling (mode II) in both the longitudinal and transverse directions. Their compressive failure was related to mode I to II transition. Possibility of delamination propagation was examined using response characteristics on the basis of the sequences. Evidence of delamination propagation was found only in panels with large damages and was not sensitive to RCS. For low and intermediate IKEs the effect of impact damage could be simulated with a single delamination (2-mm thick panels) and 3 delaminations of medium size (4-mm thick panels). For high IKEs, the additional effect of local curvature change was significant. The combined effect of delamination number, size and curvature change determines the RCSs. It was demonstrated that the present method of embedding artificial delaminations proves to be very useful for studying RCS of impact-damaged panels via the establishment of response characteristics and their links to the effects of the preconditions on them. This thesis also presents two analytical models, one for deflection of transversely loaded panels and the other one for the prediction of compressive strength retention factor (CSRF) based on the correlation between the ratio of maximum transverse force to initial threshold force and the CSRF, observed experimentally in thick panels.
33

Design of aerospace laminates for multi-axis loading and damage tolerance

Nielsen, Mark January 2018 (has links)
Acknowledging the goal of reduced aircraft weight, there is a need to improve on conservative design techniques used in industry. Minimisation of laminate in-plane elastic energy is used as an appropriate in-plane performance marker to assess the weight saving potential of new design techniques. MATLAB optimisations using a genetic algorithm were used to find the optimal laminate variables for minimum in-plane elastic energy and/or damage tolerance for all possible loadings. The use of non-standard angles was able to offer equivalent, if not better in-plane performance than standard angles, and are shown to be useful to improve the ease of manufacture. Any standard angle laminate stiffness was shown to be able to be matched by a range of two non-standard angle ply designs. This non-uniqueness of designs was explored. Balancing of plus and minus plies about the principal loading axes instead of themanufacturing axes was shown to offer considerable potential for weight saving as the stiffness is better aligned to the load. Designing directly for an uncertain design load showed little benefit over the 10% ply percentage rule in maintaining in-plane performance. This showed the current rule may do a sufficient job to allow robustness in laminate performance. This technique is seen useful for non-standard angle design that lacks an equivalent 10% rule. Current use of conservative damage tolerance strain limits for design has revealed the need for more accurate prediction of damage propagation. Damage tolerance modelling was carried out using fracture mechanics for a multi-axial loading considering the full 2D strain energy and improving on current uni-axial models. The non-conservativeness of the model was evidenced to be from assumptions of zero post-buckled stiffness. Preliminary work on conservative multi-axial damage tolerance design, independent of thickness, is yet to be confirmed by experiments.
34

Functional Studies of the <i>Arabidopsis thaliana</i> Ubc13-Uev Complex

Wen, Rui 20 September 2010
Ubiquitination is an important biochemical reaction found in all eukaryotic organisms and is involved in a wide range of cellular processes. Conventional ubiquitination requires the formation of polyubiquitin chains linked through Lys48 of the ubiquitin, which targets proteins for degradation, while the noncanonical Lys63-linked polyubiquitination of the proliferating cell nuclear antigen is required for error-free DNA damage tolerance (DDT or postreplication repair) in yeast. The ubiquitin-conjugating enzyme <i>Ubc13</i> and a cognate Ubc enzyme variant (Uev or Mms2) are involved in this process. Because there is less information available on either Lys63-linked ubiquitination or error-free DDT in plants, the goal of my research was to study the functions of <i>Ubc13</i> and Uev in plants using <i>Arabidopsis thaliana</i> as the model organism.<p> Four <i>UEV1</i> genes from <i>Arabidopsis thaliana</i> were isolated and characterized. All four <i>Uev1</i> proteins can form a stable complex with AtUbc13 and can promote <i>Ubc13</i> mediated Lys63 polyubiquitination. All four <i>UEV1</i> genes can replace yeast MMS2 in DDT function in vivo. Although these genes are ubiquitously expressed in most tissues, <i>UEV1D</i> appears to be expressed at a much higher level in germinating seeds and pollen. We obtained and characterized two <i>uev1d</i> null mutant T-DNA insertion lines. Compared with wild-type plants, seeds from uev1d null plants germinated poorly when treated with a DNA-damaging agent. Seeds that germinated grew slow and the majority ceased growth within 2 weeks. Pollen from uev1d plants also displayed a moderate but significant decrease in germination in the presence of DNA damage agent. These results indicate that <i>Ubc13-Uev</i> complex functions in DNA damage response in <i>Arabidopsis thaliana.</i> <i>Arabidopsis thaliana</i> contains two <i>UBC13</i> genes, AtUBC13A and AtUBC13B, that are highly conserved with respect to DNA sequence, protein sequence and genomic organization, suggesting that they are derived from a recent gene duplication event. Both <i>AtUbc13</i> proteins are able to physically interact with human and yeast Mms2, implying that plants also employ a Lys63-linked polyubiquitination reaction. Furthermore, Both <i>AtUBC13</i> genes were able to functionally complement the yeast ubc13 null mutants, suggesting the existence of an error-free DNA damage tolerance pathway in plants. The <i>AtUBC13</i> genes appear to be expressed ubiquitously and were not induced by various conditions tested.<p> The <i>ubc13a/b</i> double mutant lines were created and displayed strong phenotypic changes. The double mutant plants were delayed in seed germination as well as cotyledon and true leaf development. When seedlings were grown vertically on plates, the roots of the double mutant were shorter and grew in a zig-zag manner, compared to the straight growth of wild type roots. Root length and number of lateral roots on wild type and <i>ubc13a</i> and <i>ubc13b</i> single mutant plants were about 3 times longer than those of double mutant plants after 9 and 12 days of growth. When double mutant seeds were sown directly into soil, many did not germinate and those that germinated grew much slower than wild type. At 35 days, double mutant plants were smaller with thinner, flatter, and lighter coloured rosette leaves compared to wild type plants. These phenotypes indicate that <i>AtUbc13</i> not only plays a role in DDT to protect genome integrity but also is involved in plant development. Hence, this study set a cornerstone for future investigations into the roles of <i>Ubc13</i> and <i>Uev1</i> in plant development.
35

Functional Studies of the <i>Arabidopsis thaliana</i> Ubc13-Uev Complex

Wen, Rui 20 September 2010 (has links)
Ubiquitination is an important biochemical reaction found in all eukaryotic organisms and is involved in a wide range of cellular processes. Conventional ubiquitination requires the formation of polyubiquitin chains linked through Lys48 of the ubiquitin, which targets proteins for degradation, while the noncanonical Lys63-linked polyubiquitination of the proliferating cell nuclear antigen is required for error-free DNA damage tolerance (DDT or postreplication repair) in yeast. The ubiquitin-conjugating enzyme <i>Ubc13</i> and a cognate Ubc enzyme variant (Uev or Mms2) are involved in this process. Because there is less information available on either Lys63-linked ubiquitination or error-free DDT in plants, the goal of my research was to study the functions of <i>Ubc13</i> and Uev in plants using <i>Arabidopsis thaliana</i> as the model organism.<p> Four <i>UEV1</i> genes from <i>Arabidopsis thaliana</i> were isolated and characterized. All four <i>Uev1</i> proteins can form a stable complex with AtUbc13 and can promote <i>Ubc13</i> mediated Lys63 polyubiquitination. All four <i>UEV1</i> genes can replace yeast MMS2 in DDT function in vivo. Although these genes are ubiquitously expressed in most tissues, <i>UEV1D</i> appears to be expressed at a much higher level in germinating seeds and pollen. We obtained and characterized two <i>uev1d</i> null mutant T-DNA insertion lines. Compared with wild-type plants, seeds from uev1d null plants germinated poorly when treated with a DNA-damaging agent. Seeds that germinated grew slow and the majority ceased growth within 2 weeks. Pollen from uev1d plants also displayed a moderate but significant decrease in germination in the presence of DNA damage agent. These results indicate that <i>Ubc13-Uev</i> complex functions in DNA damage response in <i>Arabidopsis thaliana.</i> <i>Arabidopsis thaliana</i> contains two <i>UBC13</i> genes, AtUBC13A and AtUBC13B, that are highly conserved with respect to DNA sequence, protein sequence and genomic organization, suggesting that they are derived from a recent gene duplication event. Both <i>AtUbc13</i> proteins are able to physically interact with human and yeast Mms2, implying that plants also employ a Lys63-linked polyubiquitination reaction. Furthermore, Both <i>AtUBC13</i> genes were able to functionally complement the yeast ubc13 null mutants, suggesting the existence of an error-free DNA damage tolerance pathway in plants. The <i>AtUBC13</i> genes appear to be expressed ubiquitously and were not induced by various conditions tested.<p> The <i>ubc13a/b</i> double mutant lines were created and displayed strong phenotypic changes. The double mutant plants were delayed in seed germination as well as cotyledon and true leaf development. When seedlings were grown vertically on plates, the roots of the double mutant were shorter and grew in a zig-zag manner, compared to the straight growth of wild type roots. Root length and number of lateral roots on wild type and <i>ubc13a</i> and <i>ubc13b</i> single mutant plants were about 3 times longer than those of double mutant plants after 9 and 12 days of growth. When double mutant seeds were sown directly into soil, many did not germinate and those that germinated grew much slower than wild type. At 35 days, double mutant plants were smaller with thinner, flatter, and lighter coloured rosette leaves compared to wild type plants. These phenotypes indicate that <i>AtUbc13</i> not only plays a role in DDT to protect genome integrity but also is involved in plant development. Hence, this study set a cornerstone for future investigations into the roles of <i>Ubc13</i> and <i>Uev1</i> in plant development.
36

Assessment Of Different Finite Elementmodeling Techniques On Delamination Growth Inadvanced Composite Structures

Ucak, Ibrahim 01 February 2012 (has links) (PDF)
Virtual crack closure technique (VCCT) is commonly used to analyze debonding/delamination onset and growth in fiber reinforced composite assemblies. VCCT is a computational fracture mechanics based approach, and is based on Irwin&rsquo / s crack closure integral. In this study, the debonding/delamination onset and growth potential in a bonded fiber reinforced composite skin-flange assembly is investigated using the VCCT. A parametric finite element analyses is conducted. The finite element analyses results are compared with coupon level experimental results available in the literature. The effects of different finite element modeling techniques are investigated. The bonded flange-assembly is modeled with pure solid (3D) elements, plane stress (2D) shell elements and plane strain (2D) shell elements. In addition, mesh density, element order and geometric non-linearity parameters are investigated as well. The accuracy and performance of these different modeling techniques are assessed. Finally, effect of initial defect location on delamination growth potential is investigated. The results presented in this study are expected to provide an insight to practicing engineers in the aerospace industry.
37

Damage Tolerance of Unidirectional Carbon and Fiberglass Composites with Aramid Sleeves

Sika, Charles Andrew 14 March 2012 (has links) (PDF)
Unidirectional carbon fiber and fiberglass epoxy composite elements consolidated with aramid sleeves were radially impacted at 5 J (3.7 ft-lbs) and 10 J (7.4 ft-lbs), tested under compression, and compared to undamaged control specimens. These structural elements represent local members of open three-dimensional composite lattice structures (e.g., based on isogrid or IsoTruss® technologies). Advanced three-dimensional braiding techniques were used to continuously fabricate these specimens. The unidirectional core specimens, 8 mm (5/16 in) in diameter, were manufactured with various sleeve patterns. Bi-directional braided sleeves and unidirectional spiral sleeves ranged from a nominal full to half coverage. These specimens were tested for compression strength after impact. This research used an unsupported length of 50.8 mm (2.0 in) specimens to ensure a strength-controlled compression failure. Compression strength of undamaged unidirectional carbon fiber and fiberglass epoxy composites is virtually unaffected by sleeve type and sleeve coverage. Fiberglass/epoxy configurations exhibited approximately 1/2 and 2/3 reduction in compression strength relative to undamaged configurations after impact with 5 J (3.7 ft-lbs) and 10 J (7.4 ft-lbs), respectively. Increasing aramid sleeve coverage and/or increasing the interweaving of an aramid sleeve (i.e., braid vs. spiral) increases the damage tolerance of fiberglass/epoxy composite elements. Damaged carbon/epoxy composites exhibited an approximate decrease in strength of 70% and 75% after 5 J and 10 J of impact, respectively, relative to undamaged configurations. The results verify that an aramid sleeve, regardless of type (braid or spiral), facilitates consolidation of the carbon fiber and fiberglass epoxy core. Not surprisingly, full coverage configurations exhibit greater compression strength after impact than half coverage configurations.
38

Processing of toughened cyanate ester matrix composites

Rau, Anand V. 06 June 2008 (has links)
This investigation explored the feasibility of recently developed toughened cyanate ester networks as candidate materials for high performance composite matrix applications. The resin investigated was a Bisphenol-A cyanate ester toughened with hydroxy functionalized phenolphthalein based amorphous poly(arylene ether sulfone). The thermoplastic modified toughened networks exhibited improvement in the fracture toughness over the base cyanate ester networks without significant reductions in mechanical properties or glass transition temperature. Void free, unidirectional carbon fiber prepreg was successfully manufactured with the toughened cyanate resin using a solventless hot-melt technique. The resin mass fraction of the prepregs was between 31 and 35%. The carbon fiber, toughened cyanate ester prepreg was fabricated into composite panels for mechanical and physical testing. The cure cycle used to manufacture the composite laminates was developed with the aid of a process simulation model developed by Loos and Springer. In order to accurately simulate the resin curing and flow processes, the cure reaction kinetics and melt viscosity was characterized as a function of temperature and degree of cure and input into the simulation model. The model generated cure cycle was used in the manufacture 8-ply unidirectional and 16-ply quasi-isotropic composite laminates. The manufactured laminates were well consolidated to the specified fiber volume fraction between 59 and 60%. Photomicrographs showed that the laminates are void free, the fiber and resin distribution is uniform and fiber wet-out is very good. Mechanical tests were performed to measure the impact damage resistance and shear properties of the toughened cyanate ester resin composites. The results show improvements in impact damage resistance compared with the commonly used hot-melt epoxy resin composites. The influence of processing on performance was observed from the results of shear tests. Carbon fabric composite panels were manufactured by liquid molding processes (resin transfer molding and resin film infusion), with a series of four toughened cyanate ester resins generated by varying the concentration and the molecular weight of the toughener. The panels were subjected to physical, damage tolerance, and fracture toughness tests. The results of physical testing indicate consistently uniform quality, and the void content was found to be less than 2%. The toughened cyanate ester composites exhibited significantly improved impact damage resistance and tolerance compared with hot-melt epoxy systems. Marked increase in the mode II fracture toughness were observed with an increase in the concentration and the molecular weight of the toughener. / Ph. D.
39

Skaleninvarianz und deren Bedeutung für die Modellierung der Ermüdungsrißausbreitung in Aluminiumlegierungen

Bergner, Frank 21 September 2004 (has links) (PDF)
Die Arbeit ruht auf zwei Säulen: Die eine besteht in der Aufbereitung, Erprobung und konsequenten Anwendung von Methoden der Skaleninvarianzanalyse, die andere in einem breiten Fundus an experimentellen Daten für aushärtbare Aluminiumknetlegierungen in der Form dünner Bleche, die unter gleichartigen, streng kontrollierten Bedingungen gewonnen worden sind. Als methodische Weiterentwicklungen sind die Fundierung des Umgangs mit der algebraischen Korrelation zwischen Vorfaktor und Exponent einer beliebigen Potenzgleichung, die Übertragung des Ansatzes der finiten Skaleninvarianz auf die Ermüdungsrißausbreitung sowie die Kombination der Idee eines geschwindigkeitsbestimmenden Schrittes mit der Dimensionsanalyse der umgebungsabhängigen Ermüdungsrißausbreitung bis hin zur Kartierung der geschwindigkeitsbestimmenden Schritte zu nennen. Auf experimenteller Seite wurde eine Datensammlung mit gemessenen Streubändern für die Ermüdungsrißausbreitung und das Verfestigungsverhalten von 39 Orientierungen bzw. Auslagerungszuständen von Aluminiumlegierungen aufgebaut. Diese Sammlung wird durch ausgewählte Messungen der Ermüdungsrißausbreitung im schwellenwertnahen Bereich, Restfestigkeitsversuche, Rißschließmessungen, Rauheitsmessungen an Bruchflächen, frequenzabhängige Messungen zum Umgebungseinfluß sowie Untersuchungen an drei Stählen und einer Magnesiumlegierung sinnvoll ergänzt. Auf der Basis der Meßdaten und der Analysemethoden wurde der Werkstoffeinfluß auf die Ermüdungsrißausbreitung in dünnen Blechen aus Aluminiumknetlegierungen bei Belastung mit konstanter Amplitude im Gültigkeitsbereich der linear-elastischen Bruchmechanik untersucht. Dabei wurden folgende Größen als wesentliche Einflußfaktoren identifiziert: - für die Gruppenzugehörigkeit: der Kohärenz- und Ordnungsgrad der festigkeitsbestimmenden Ausscheidungen und die resultierende Gleitverteilung, - für den gemeinsamen Vorfaktor der Legierungen der Gruppe 1: die elastischen Eigenschaften und das Spannungsverhältnis (Translation der Paris-Geraden), - für die Exponenten der Legierungen der Gruppe 1: 0,2%-Dehngrenze, athermischer Verfestigungsparameter, Probendicke und Kc-Wert als dimensionsloses Potenzprodukt (Rotation der Paris-Geraden), - für die Legierungen der Gruppe 2: das Ausmaß der Rißablenkung und eine bleibende Mode-II-Komponente der Rißöffnungsverschiebung, - für den Umgebungseinfluß der Legierung 6013 T6: Frequenz und Schwingbreite des Spannungsintensitätsfaktors. Die Diskussion umfaßt den wertenden Vergleich der experimentellen Ergebnisse mit Befunden und Modellen aus der Literatur, Erklärungsansätze für die Ursachen der Einflußnahme der wesentlichen Parameter sowie einen Modellansatz für die Legierungen der Gruppe 1 auf der Basis einer Mischungsregel. Dabei hatte sich erwiesen, daß keines der aus der Literatur bekannten Modelle alle Befunde richtig wiedergibt. Einige der ausgearbeiteten Erklärungsansätze bedürfen der zukünftigen Vertiefung. / The work is based upon two essentials: the first one is the preparation and application of techniques of scale invariance analysis, the second one consists in a database of experimental results for heat-treatable thin-sheet wrought aluminium alloys obtained under uniform conditions. Progress with respect to methodology was achieved regarding, first, the algebraic correlation between sets of coefficients and exponents of any power law, second, the transfer of the concept of finite scale invariance to the phenomenon of fatigue crack growth (FCG), and third, the combination of the ideas of a rate-controlling step and dimensional analysis of environmental-assisted FCG including the mapping of rate-controlling steps. In the experimental part, a database containing both measured scatterbands of FCG and strengthening characteristics for several orientations and aging conditions of aluminium alloys amounting to a total of 39 different material conditions was established. This database was supplemented with results of selected measurements of near-threshold FCG rates, residual strength, crack closure, roughness of fatigue cracks, and frequency-dependent environmental-assisted FCG as well as investigations of three plain-carbon steels and a magnesium alloy. Based on these prerequisites, the influence of the material on the FCG behaviour of thin-sheet wrought aluminium alloys under constant-amplitude loading was investigated within the limits of validity of linear-elastic fracture mechanics. The following influence factors were identified to be essential: The assignment of alloys to one out of two groups is mainly determined by the degrees of coherency and order of the strength-controlling precipitates and the resulting type of slip distribution. The normalized-Paris-law coefficient for the first group is mainly dependent on the modulus of elasticity and the stress ratio. The Paris-law exponents for the first group are dominated by a dimensionless power monomial of the 0.2% proof stress, the athermal strengthening coefficient, sheet thickeness and the critical stress intensity factor. The retardation of the FCG rates of alloys of the second group relative to the first group is mainly determined by the amount of crack deflection and by a residual mode-II component of crack opening displacement. Finally, the environment-assisted FCG for aluminium alloy 6013 T6 reveals a coupled dependence on loading frequency and cyclic stress intensity factor. The discussion covers the evaluation of the results in relation to observations and models from the literature, the explanation of the modes of operation of the major influence factors and a model based on a mixing rule for the alloys of the first group. It turned out that there is not any model that reflects all of the observations simultaneously. Some of the ideas presented require to be worked out in more detail.
40

Enhanced impact resistance and pseudo plastic behaviour in composite structures through 3D twisted helical arrangement of fibres and design of a novel chipless sensor for damage detection

Iervolino, Onorio January 2017 (has links)
The future of the aerospace industry in large part relies on two factors: (i) development of advanced damage tolerant materials and (ii) development of advanced smart sensors with the ability to detect and evaluate defects at very early stages of component service life. Laminated composite materials, such as carbon fibre reinforced plastics (CFRP), have emerged as the materials of choice for increasing the performance and reducing the cost and weight of aircrafts, which leads to less fuel consumption and therefore lower CO2 emissions. However, it is well known that these materials exhibit fragile behaviour, poor resistance to impact damage caused by foreign objects and require a relatively slow and labour intensive manufacturing process. These factors prevent the rapid expansion of composite materials in several industrial sectors at the current time. Inspired by the use of rope throughout history and driven by the necessity of creating a lean manufacturing process for composites and enhancing their impact properties, the first part of this work has shown that enhanced damage tolerance and pseudo-ductile behaviour can be achieved with standard CFRP by creatively arranging the fibres into a 3D twisted helical configuration. Through an extensive experimental campaign a new method to arrange fibre reinforcement was presented and its effect investigated. The second part of this PhD work focused on developing a new smart sensor. A spiral passive electromagnetic sensor (SPES) for damage detection on CFRP and glass fibre reinforced plastics (GFRP) is presented in this work. A range of defect types in glass and carbon composite has been considered, such as delamination, perforated holes and cracks. Furthermore, throughout this work, the SPES has been exploited as a multi-sensing device allowing the ability to detect temperature and humidity variation, presence of ice and act as an anti/de-icing device.

Page generated in 0.0563 seconds